PROBLEM SET 2

Due: Noon, Monday September 26, email the pdf to toolkit2016homework@gmail.com

Homework policy: Exactly the same as last time.

Notational conventions: The notation $[n] = \{1, 2, ..., n\}$ is very standard in theoretical computer science. Some people like to use **boldface** to denote random variables; you might like to do this too.

- 1. (a) Let X be a random variable which is 1 with probability p and 0 with probability 1-p. We "empirically estimate the mean of X", by defining $\overline{X} = \frac{1}{n}(X_1 + \cdots + X_n)$, where X_1, \ldots, X_n are independent copies of X. We want to choose $n = n(\varepsilon, \delta)$ sufficiently large so that " \overline{X} is ε -accurate with δ -confidence", meaning $\Pr[|\overline{X} p| > \varepsilon] \le \delta$. Show that $n = O(\frac{1}{\varepsilon^2} \log(1/\delta))$ is sufficient (as $\varepsilon, \delta \to 0^+$).
 - (b) Let Y be a random variable with a continuous probability distribution. We estimate the median of Y by defining $m = \text{median}(Y_1, \ldots, Y_n)$, where Y_1, \ldots, Y_n are independent copies of Y. We wish to have

$$\frac{1}{2} - \varepsilon \le \Pr[\mathbf{Y} \le \mathbf{m}] \le \frac{1}{2} + \varepsilon,$$

except with probability at most δ . Again, show that $n = O(\frac{1}{\varepsilon^2}\log(1/\delta))$ is sufficient.

2. Prove the following "one-sided" version of Chebyshev's Inequality: If X is a random variable with $\mathbf{E}[x] = \mu$ and $\mathbf{stddev}[X] = \sigma > 0$, then for every t > 0,

$$\Pr[\boldsymbol{X} \ge \mu + t\sigma] \le \frac{1}{t^2 + 1}.$$

(Hint: Mimic the proof of Chebyshev's Inequality. "Standardize" X, then prove and use the fact that $\frac{(x+1/t)^2}{(t+1/t)^2} \ge 1_{\{x \ge t\}}$.)

3. It is a basic fact of linear algebra that if we have m orthogonal unit-length vectors $\vec{u}_1, \dots, \vec{u}_m$ in \mathbb{R}^n , then $m \leq n$. (Recall that

"orthogonal"
$$\Leftrightarrow \angle(\vec{u}_i, \vec{u}_j) = \pi/2 = 90^{\circ} \Leftrightarrow \vec{u}_i \cdot \vec{u}_j = 0,$$

where $\vec{u}_i \cdot \vec{u}_j = ||\vec{u}_i|| ||\vec{u}_j|| \cos(\angle(\vec{u}_i, \vec{u}_j))$ is the dot-product.)

However, in this problem you will show the rather surprising fact that if we are willing for the unit vectors to only be *almost* orthogonal, we can have *exponentially* many such vectors.

Suppose we define random vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_m \in \mathbb{R}^n$ by choosing every coordinate of each of the vectors to be ± 1 with probability 1/2 each. Then we put $\vec{w}_i = \vec{v}_i/\sqrt{n}$ for each $i \in [m]$ so as to get unit vectors (meaning $||\vec{w}_i|| = 1$ for all $i \in [m]$).

(a) Suppose $i \neq j$. Let $\boldsymbol{\theta}_{ij} = \measuredangle(\vec{\boldsymbol{w}}_i, \vec{\boldsymbol{w}}_j)$. Show that

$$\mathbf{Pr}[|\cos \boldsymbol{\theta}_{ij}| \geq \delta] \leq \exp(-\Omega(\delta^2 n)).$$

Deduce

$$\mathbf{Pr}[|\pi/2 - \boldsymbol{\theta}_{ij}| \ge \delta] \le \exp(-\Omega(\delta^2 n)).$$

(b) Show that even for some $m = \exp(\Omega(\delta^2 n))$ we will have

$$\Pr[\pi/2 - \delta \le \theta_{ij} \le \pi/2 + \delta \text{ for } all \text{ pairs } i \ne j] \ge .99.$$

- 4. Let X be a random variable that is always nonnegative. Assume also that X only takes on finitely many different values.¹
 - (a) Prove

$$\mathbf{E}[\boldsymbol{X}] = \int_0^\infty \mathbf{Pr}[\boldsymbol{X} \ge t] dt.$$

(b) Prove

$$\mathbf{E}[\mathbf{X}^2] = 2 \int_0^\infty t \, \mathbf{Pr}[\mathbf{X} \ge t] \, dt.$$

- 5. Let X be a nonnegative random variable.
 - (a) Prove that $\Pr[X = 0] \le \frac{\operatorname{Var}[X]}{\operatorname{E}[X]^2}$.
 - (b) Prove that $\Pr[X > 0] \ge \frac{\mathbf{E}[X]^2}{\mathbf{E}[X^2]}$.
 - (c) In the Erdős–Rényi random graph model, we start with n vertices, and then each of the $\binom{n}{2}$ potential edges is included independently with probability p (where p may be a function of n). This is denoted $\mathbf{G} \sim \mathcal{G}(n,p)$. Suppose that $p = o(n^{-2/3})$. Show that

$$\Pr[G \text{ contains a 4-clique}] = o(1) \qquad (n \to \infty).$$

(Hint: Let X be the number of 4-cliques in G. Compute $\mathbf{E}[X]$ exactly as a function of n and p; then use Markov.)

(d) On the other hand, show that if $p = \omega(n^{-2/3})$ then

$$\Pr[G \text{ doesn't contain a 4-clique}] = o(1) \qquad (n \to \infty).$$

(Hint: use part (a) or (b). You'll have to carefully calculate the probability of 4-cliques occurring simultaneously on vertex sets A and B when $|A \cap B| \ge 2$.)

- 6. In this problem, let $Z \sim N(0,1)$ denote a standard Gaussian random variable, with probability density function $\varphi(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$. Before solving part (a) below, you might try differentiating $\varphi(x)$, just for fun.
 - (a) Compute $\int_0^\infty x \varphi(x) dx$. Deduce $\mathbf{E}[|\mathbf{Z}|] = \sqrt{2/\pi}$.

¹This isn't really necessary, but it keeps things simple.

(b) Let a_1, \ldots, a_n be real numbers satisfying $\sum_i a_i^2 = 1$ and write $\varepsilon = \max\{|a_i| : i \in [n]\}$. Let $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_n$ be i.i.d. random variables, each being ± 1 with equal probability. Let $\boldsymbol{S} = \sum_i a_i \boldsymbol{x}_i$. Show that

$$\left| \mathbf{E}[|\mathbf{S}|] - \sqrt{2/\pi} \right| = o(1) \quad (\text{as } \varepsilon \to 0^+).$$

Here the o(1) function may not depend on n or the a_i 's; it must be a function of ε only. For full credit, you should achieve a bound of $O(\varepsilon \sqrt{\log(1/\varepsilon)})$.

Hint: for this problem you will need the Berry–Esseen Theorem, which will be covered on Wednesday:

Berry-Esseen Theorem. There is a universal constant c (e.g., c = .56 suffices) such that the following holds: Let X_1, \ldots, X_n be independent random variables with $\mathbf{E}[X_i] = 0$ for all $i \in [n]$, $\mathbf{Var}[X_i] = \sigma_i^2$, $\sum_{i=1}^n \sigma_i^2 = 1$, and $\sum_{i=1}^n \mathbf{E}[|X_i|^3] = \beta$. Write $S = X_1 + \cdots + X_n$. Then for all $u \in \mathbb{R}$,

$$\left| \mathbf{Pr}[\mathbf{S} \le u] - \mathbf{Pr}[\mathbf{Z} \le u] \right| \le c\beta.$$