Analyzing typical worst-case insert/lookup time (under SUHA) when \(n \) items hashed to \(n \) slots.

Typical max load when \(n \) balls thrown into \(n \) bins

Recall: we ended with \(\Pr[T_{[0]} \text{ gets } k \text{ balls}] \leq \frac{1}{k!} \)

\[\Pr[T_{[0]} \text{ gets } \geq 10 \text{ balls}] \leq \Pr[10] + \Pr[11] + \ldots \]

"union bound"

\[\leq \frac{1}{10!} + \frac{1}{11!} + \frac{1}{12!} + \ldots \]

\[= \frac{1}{10!} \left(1 + \frac{1}{11!} + \frac{1}{12!} + \frac{1}{13!} + \ldots\right) \]

\[\leq \frac{1}{10!} \left(1 + \frac{1}{11} + \frac{1}{11^2} + \frac{1}{11^3} + \ldots\right) \]

\[= \frac{1}{10!} \left(\frac{1}{1 - \frac{1}{11}}\right) = \frac{1}{10!} \cdot \frac{11}{10} \]

\[= \frac{11}{10} \cdot \frac{1}{10!} \]

"just slightly bigger than \(\frac{1}{10!} \)"

\[\Pr[T_{[0]} \text{ gets } \geq k \text{ balls}] \leq \frac{k+1}{k} \cdot \frac{1}{k!} \leq 2 \cdot \frac{1}{k!} \]

"more like \(\approx 1 \cdot \frac{1}{k!} \), but oh well"

\[\Pr[T_{[1]} \text{ gets } \geq k \text{ balls}] \leq \frac{2^{\frac{1}{k!}}}{k!} \]

\[\Pr[T_{[2]}] \leq \ldots \]

\[\Pr[T_{[0]} \geq k \text{ or } T_{[1]} \geq k \text{ or } \ldots \text{ or } T_{[n-1]} \geq k] \leq \]

\[\Pr[T_{[0]} \geq k] + \Pr[T_{[1]} \geq k] + \ldots + \Pr[T_{[n-1]} \geq k] \]

\[\leq \frac{2}{k!} + \frac{2}{k!} + \ldots + \frac{2}{k!} = \frac{2}{k!} \cdot n \]

\[\Pr[\text{max load } \geq k] \leq \frac{k}{k!} \]
Say \(n = 1000 \). \[\Pr \left[\max \text{ load } > k \right] \leq \frac{2000}{k!} \]

\[\Rightarrow 6 \leq \frac{2000}{720} \]

\[\Rightarrow 7 \leq \frac{2000}{5040} \times 4 \]

\[\Rightarrow 8 \leq \frac{2000}{40320} \times 0.5 \]

Say \(n = 10^6 \), want to say \(\Pr \left[\max \text{ load } > k \right] \leq \frac{1}{500} \) (say)

What \(k \)? Need \(\frac{2 \times 10^6}{k!} \leq \frac{1}{500} \Rightarrow k! > 10^9 \Rightarrow k > 12 \)

"For 1M balls in 1M bins, \(\max \text{ load } \) \(\leq 1 \) except w.prob \(\leq \frac{1}{500} \)"

For general \(n \), need \(k! > 1000n \).

For \(n = 10^6 \), need \(k! > 1000 \times 10^6 \).

How big is \(k! \)?

\[\log_2(k!) = \log \left(k \cdot (k-1) \cdot (k-2) \ldots \cdot 3 \cdot 2 \cdot 1 \right) \]

\[= \log k + \log (k-1) + \log (k-2) + \ldots + \log \left(\frac{k}{2} \right) + \ldots + \log \left(\frac{k}{2} \right) \]

\[= \frac{k}{2} \log \left(\frac{k}{2} \right) = \frac{k}{2} \left(\log k - 1 \right) \geq \frac{k}{2} \cdot \frac{\log k}{2} \]

\[= \frac{1}{2} k \log k \geq 16 \log 10 \]

\[k! \text{ is a } \Theta(k \log k) \text{-digit number}. \]

Fact: \(22! \) has 22 digits.

\(23! \approx 10^{23} \cdot 22! \) has \(\geq 23 \) digits

\(24! \approx 10^{24} \cdot 23! \) has \(\geq 24 \) digits

\(k! \) has \(\geq k \) digits (ex: more like \(\Theta(k \log k) \) digits)

\(n \) has \(\sim \log_{10} n \) digits. So if \(k \geq \log_{10} n + 3 \), \(k! > 1000n \).

So "For \(n \) balls in \(n \) bins, \(\max \text{ load } \leq O(1/n) \) except w.prob \(\leq \frac{1}{500} \)." (ex: \(\leq O(\log n) \))
"The power of 2 choices"

Idea: Get hold of two ("independent") hash functions, h_1, h_2: $\{\text{strings}\} \to \{0, 1, \ldots\}$

- Insert(s): Look at $T[h_1(s)], T[h_2(s)]$, linked lists.
- Append s to whichever is shorter (break ties count.)
- Lookup(s): Look for s in both $T[h_1(s)], T[h_2(s)]$.

Can't really make things more than $2x$ worse.

Surprise: worst-case time goes way down, typically.

Balls & bins ver: To "throw" a ball, pick 2 bins at random, put ball in less-loaded bin.

Theorem: For $n = \alpha \cdot 2^m$ balls, with high probability, max load is $O(\log \log n)$. Way better than $O(\log n)$.

Proof is a little elaborate, so I'll just give...

Idea of why: After throwing n balls, let

α_2 = fraction of bins with ≥ 2 balls

Claim: $\alpha_2 \leq \frac{1}{4}$. Because if $\frac{3}{4}$ bins have ≥ 2 balls, that's $> n$ balls, $n \geq$.

Say we've thrown some of the balls, $\alpha_2 \leq \frac{1}{2}$ now. It's even $\leq \frac{1}{2}$ at end, so things only better now.

New ball thrown: What is prob. new ball ends up at "height" ≥ 3?

- Both bins it looks at must have ≥ 2 balls
- prob $\leq \alpha_2^2 \leq \frac{1}{4}$.
- "intuitively", α_3: fraction of bins with ≥ 3 balls $\leq \frac{1}{4}$

Each ball thrown has $\frac{1}{4}$ chance of being in a bin of height ≥ 3.
New ball thrown: what is prob. it ends up at height ≥ 4?

Both bins it looks at must have ≥ 3 balls.

\[\Rightarrow \text{prob. } \leq \alpha_3 \leq \left(\frac{4}{16}\right)^2 \leq \frac{1}{16}. \]

\[\alpha_4 = \text{frac. 6 bins with } > 4 \text{ balls } \leq \frac{1}{16} \]

\[\alpha_5 \leq \left(\frac{1}{16}\right)^2 = \frac{1}{256} = 2^{-8} \]

\[\alpha_6 \leq \alpha_5 \leq 2^{-6} \]

\[\alpha_7 \leq \alpha_6 \leq 2^{-3} \]

\[\alpha_{k+2} \leq 2^{-2^k} \]

Intuitively if $\alpha_{k+2} < \frac{1}{n}$, then probably no bin have $> k+2$ balls

\[\Rightarrow 2^{-2^k} < \frac{1}{n} \Rightarrow 2^{2^k} > n \Rightarrow k > \log \log n. \]

So "probably" max load $\leq \log \log n + 2$.

Ex: 3 choices still "only" gives $\Theta(\log \log n)$. [So just stick with 2!]

Bloom Filters: Say: *m truly enormous (billion, trillion...)*

* strings you're storing also large $\sim L$ 64 bits

 (e.g. tweets: $\approx 250 \times 8 = 2000$ bits).

Can't possibly use less than Lm bits of space, right? [Right?? And hashing within m uses $\sim L \log n$]

Use $\approx 8.66m$ bits total! $230x$ savings $\sqrt{230x}$ fewer servers!!!

What's the catch??

Lookup errors: Lookup(s) wrongly says "yes" (even though was never stored)

\[\approx 6.66 \approx 1.44 \times 6 \times 2^{-1.6} \]

1.6% = 2^{-k}, for $k = 6$. Can choose other k.

Trade off: 1.44m extra bits, to halve lookup error prob.
How Bloom Filters work

Pick small \(k \), e.g., \(k = 6 \).

Set \(N = k \cdot m \) \(\left[\text{rounded off to integer} \right] \), # of bits used.

Allocate array \(T[0...N-1] \) of bits, init. all 0's.

Choose \(k \) "independent" hash functions \(h_1,...,h_k: \{ \text{strings} \} \to \{0,1,...,N-1\} \).

Insert \((s)\): Set \(T[h_1(s)] = 1, \ldots , T[h_k(s)] = 1 \). \(\square \) maybe some were already 1 \(\square \)

Lookup \((s)\): Return \(\text{AND of } T[h_1(s)], \ldots , T[h_k(s)] \).

Space: \(\approx 1.44k \) bits per item \(\smile \)

Time: \(O(1) \) \(\left[O(k) \right] \) operations \(\smile \)

Delete \((s)\): not possible, even slowly \(\ominus \)

"False positive problem": Lookup\((s)\) may return True even if \(s \) was never inserted.

[No "false negs" \(\smile \).]

Analysis: Prob. [false positive lookup] \(\leq ? \)

Ideas

"Again, too fiddly to do rigorously here, so we'll cheat a little!"

Q1: After inserting \(m \) items, what frac. of 6 bits in \(T[] \) do we expect are 0? Still

A: Under SUHA, it's like throwing \(km \) balls into \(N = \frac{km}{ln^2} \) bins \(\left(\lambda = \frac{km}{ln^2} \right) \), asking about frac. of empty bins

\[\Pr[\text{bin 1 empty}] = \left(1 - \frac{1}{N}\right)^{km} \]
Most useful approx. ever:

\[1 + x \approx e^x \text{ if } x \text{ is tiny} \]

\[\approx 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \ldots \]

If \(|x| = 10^{-6} \)

\[\frac{10^{-12}}{2} = \text{negligible} \]

Case 1: \(x = -\frac{1}{N} \) is tiny,

\[1 + \left(-\frac{1}{N}\right) \approx e^{-\frac{1}{N}} \]

\[\left(1 - \frac{1}{N}\right)^k \approx \left(e^{-\frac{1}{N}}\right)^k = e^{-\frac{k}{N}} \]

\(N = \frac{k}{\ln^2 m} \)

\[e^{-\ln^2 \frac{1}{\alpha}} = e^{\alpha^2} = \frac{1}{\alpha}. \]

Case 2: \(\Pr[\text{bin 1 empty}] \approx \frac{1}{N} \)

[Same for every part of bin,]

We expect after \(m \) inserts, \(T[\cdot] \) is about 50-50 0's and 1's

Now say we do lookup(s), where \(s \) has never been inserted.

By SUHA, \(h_i(s), \ldots, h_k(s) \) act like \(k \) independent

\[\Pr[\text{AND of } T[h_1(s)], \ldots, T[h_k(s)]] = \text{True}] \]

\[= \Pr[\text{false pos.}] = \left(\frac{1}{2}\right)^k. \]

Summary:

- can store \(m \) items of any size
- using \(\approx 1.44k \) bits per item,
- with \(O(1) \)-time lookups/inserts,
- and Insert false-positive prob \(\approx 2^{-k} \).