Basic Problems: I: Task Scheduling

n tasks \(t_1, t_2, \ldots t_n \)

n people \(P_1, P_2, \ldots P_n \)

Each person capable of doing some subset of tasks \(S_i \subseteq \{ t_1, \ldots t_n \} \).

Q1: can we assign 1 task per person so that all tasks are done?

Q2: if not, how many tasks can we concurrently do
 (with at most 1 task per person)?

Q3: Each person also has a score for each task.
 \[W_{ij} = \text{"quality of work if person } i \text{ does task } j. } \]

Now: assign tasks to people to maximize total weight.

Note: if \(W_{ij} > 1 \) if \(i \) can do task \(j \)

\[
\text{maximizing } \sum W_{ij} = \text{maximizing } \# \text{tasks } \]

So Q3 generalizes Q2.

Which generalizes Q1.

How to solve these problems?
II: Airline Schedule:

1. k planes at some locations. (say identical for now)
2. have m flights to handle.
 - each flight has start time, end time, start location and end location:
 \[f = (\text{start}, \text{endtime}, \text{sloc}, \text{endloc}) \]
 - a plane can be used for flight \(f_1 \) and \(f_2 \)

\[
\text{if } \text{etime}_1 + (\text{service delay}) + (\text{travel time from } \text{eloc}_1 \text{ to } \text{sloc}_2) \\
\leq \text{stime}_2.
\]

Can \(k \) planes handle all \(m \) flights?

Baseball Elimination:

Given set of teams, each with \(w_x = \# \) of wins already.

and \(x, y \) teams, \(g_{xy} = \# \) of games \((x,y)\) still play.

\(\text{and target team } z = \text{Pirates}, \text{say} \)

Is it possible to have outcomes of the

\[G = \sum_{x,y} g_{xy} \] games

such that \(z \) is the top team

(i.e. if \(w_z \) is wins in these outcomes for \(z \))

\[\geq w_x + \# \text{ wins for } x \quad \forall x \neq z \)
Project Selection:

\[\{n \} = \{ 1, 2, \ldots, n^3 \} \]

- Set of projects each with profit \(p \in \mathbb{Z} \) (both positive and negative possible)
- Precedences/dependencies
 \((i, j) \) or \(i \rightarrow j \)
 means must do \(i \) before doing \(j \).

- Pick set of projects so that
 \(S \subseteq \{ n \} \) s.t. \(\forall j \in S, \exists i \in S \) such that \(i \rightarrow j \) in dependencies
 then \(i \in S \) as well.

\[
\max \sum_{i \in S} p_i = \text{profit}
\]

And many more... (see HWs etc).

Can be solved using the same abstraction:--

- **Max Flow in a flow network**
 - Given a "flow network" with a source and sink,
 find the maximum flow in this network.

- Efficient algorithms for this
- Notion of "duality" and the max-flow/min-cut theorem.
- Integer vs. fractional solutions.
Flow network:

Directed graph \(G = (V, E) \) with special nodes \(s = \text{source} \)
\(t = \text{target or sink} \)
all others called internal nodes

Every edge has a capacity \(\text{cap} \geq 0 \).

Assume:
[No edge enters \(s \), no edge leaves sink \(t \)]

Flow: map \(f : E \rightarrow \mathbb{R}_{\geq 0} \) such that

(a) \(0 \leq f(e) \leq \text{cap}(e) \).
(b) \(\sum_{e \in \text{in} u} f(e) = \sum_{e \in \text{out} u} f(e) \) \((\ast)\)

Fact: total flow leaving \(s \) = total flow entering \(t \).

Pro: sum \((\ast)\) over all internal nodes. then every edge between internal nodes cancels out. left with

\[\sum_{e \in \text{in} t} f(e) = \sum_{e \in \text{out} t} f(e) \]

This is the \("\text{value}\) of the flow.

Problem (Max Flow): Find flow that has maximum value.
Idea #1: Greedy.
Find a path from s to t. Push flow, repeat.

[Diagrams of flow networks with arrows indicating flow and capacities.]

if f < $\sqrt{2}$ then after this step, used 1 unit on that edge. So left with capacity $\frac{1}{\sqrt{2}}$. What now?

Didn't find max flow = 2.

Idea #2: Greedy, but with possibility of undoing.

Residual graph: Given flow network $G = (V, E)$ and a flow f.
get new network $G_f = (V, E_f)$ as follows.

[Diagrams of residual graphs with arrows indicating residual capacities and flows.

Now in example above:

[Diagrams of flow networks showing G_0, G_{f_1}, and $G_{f_1+f_2}$ with arrows indicating flows and capacities.

Now no path from s to t in residual graph. Stop.
Claim: $f_1 + f_2 = \text{maxflow in } G$.}
Wait, what? Why is \(f + f \leq \text{even a flow?} \) And why max?

(Just proving for this example now, will do general proof soon).

Fact 1: if \(f \) in flow in \(G \), and \(g \) is flow in \(G_f \) then \(f + g \) is flow in \(G \).

Pf: \(0 \leq f(e) \leq \text{cap}(e) \) if \(f \) in flow in \(G \).

\[-f(e) \leq g(e) \leq \text{cap}(e) - f(e) \] if \(g \) in flow in \(G_f \).

\(0 \leq (f + g)(e) \leq \text{cap}(e) \).

Also: \(f \circ g \) have flow conservation \(\Rightarrow \) \(f + g \) does too.

Similarly can prove.

Fact 1b: if \(f \) in flow in \(G \), and \(\underline{f} \) is max-flow in \(G \) \(\Rightarrow \) \(f + \underline{f} \) is max-flow in \(G \).

Pf: sps \(\underline{f} \) is max-flow in \(G \)

\(f \) is any flow

\(\Rightarrow (\underline{f} - f) \) is a flow in \(G_f \)

sats flow conservation, so only need to handle capacities.

\[e \left[0, \text{cap}(e) - f(e) \right] \]

\[\text{if } F(e) \geq f(e) \text{ then use } F(e) - f(e) \text{ on forward edge}. \]

\[\text{if } F(e) < f(e) \text{ then use } f(e) - F(e) \text{ on back edge}. \]

For example.

\[F \]

\[f \quad \text{and} \quad \Rightarrow \quad \text{and} \quad \Rightarrow \]

\[F - f \]
Great. So the flow we found $f_1 + f_2$ was a feasible flow in G.

Why isn't max flow for that graph G?

Fact 2: Capacity of any cut separating (s,t) is max flow value.

Partitions of vertices A, B s.t. $s \in A$ \\
$t \in B$.

Capacity of cut = total capacity of edges from A to B \\
(do not look at edges from B to A)

So by Fact 2, applied to cut $E_{s3}, E_{a,b,e3}$

max flow value \leq $\text{cap}(E_{s3}) + \text{cap}(s,b) = 1 + 1 = 2$.

Note: We have a feasible easy to verify certificate of optimality.

If I give you a flow f, you can quickly verify it is a flow.

And if I give you a cut (A,B) separating $s \in A$ whose capacity equals value of f \\
\Rightarrow know that f is maximum flow.
OK: here's the general algorithm (works for graphs with integer capacities).

Algorithm Ford-Fulkerson (Graph G, caps).

1. Find $s \rightarrow t$ path in G with every edge having capacity > 0.
2. Augmenting path.
 - Push flow on path of value $\min_{e \in P} \text{cap}(e)$, call this f.
 - Update residual graph $g \leftarrow FF(G_f)$.
3. Return $g + f$.

Fact 3: If caps are integers, FF terminates in at most $\sum_{e \in E} \text{cap}(e)$ iterations.

In fact, if max flow $= F^*$, terminates in $\leq F^*$ iterations.

Proof: Each time max flow in residual graph drops by at least 1. (by Fact 1b).

Corollary: Runtime $= O(mF^*)$. Since each iteration uses DFS to find a path.

That's it, we're done:

- Max flow in $O(mF^*)$ time.
- (at least for integer capacity networks).
So application #1

maximum cardinality matching in bipartite graphs

(aka allocating jobs to people)

Bipartite graph

\[B \]

Want a matching \(M \) of largest size

\[\text{set of edges not sharing endpoints} \]

\[\Rightarrow \text{exactly \ one\ job\ per\ person} \]

\[\Rightarrow \text{exactly \ one\ person\ per\ job} \]

Claim:

\(\exists \text{a matching } M \text{ in } B \text{ of size } K \)

\(\iff \text{exists flow in } G \text{ of value } K \)

with integer \(f(e) \) values.

Proof:

[Diagram of bipartite graph and flow network, showing matching and flow]
can find max cardinality matching in bipartite graphs in time $O(mF^*) \leq O(mn)$

can do better. (not in this course)
do weighted matching — later lecture (on min cost flow)
do non-bip matchings (also not in this course)
Example: Multiple Source sinks. (with demands)

Graph: each node has number \(b_v \in \mathbb{Z} \) (say) \(\Leftarrow \) demand

some negative: \(b_a = -10 \) means want flow that has 10 units 4 flow leaving a (in total)

\(b_v = 7 \) means want flow that has 7 units 4 flow entering v (in total)

is a nice solution

\(17 - 7 = 10 \).

Hence, since each unit 4 flow enters some node and leaves another

must have \(\sum b_v = 0 \).

How to find such a flow? Easy. (if one exists)

'Make a new source s, new sink t.'

Find a max flow.

Claim: Max flow of value = \(\sum u: b_u < 0 \)

\(\iff \) flow satisfying these demands. [Pf: ev]

new edges

all nodes u with bu < 0

all nodes v with bv > 0
Extensin: Flow with lower bounds. (and demands)

In addition to previous setting $G = (V, E)$ demands d_v cap $c(e)$

Also have some edges with lower bounds: $\text{lower}(e) > 0$

Want at least $\text{lower}(e)$ flow on edge e.

Does I such a flow?

Easy: "send the flow in advance". So

Claim:
Any flow solution in old graph with lower bounds and demands

\iff

Any flow solution in new graph with these new demands.

[Pf: exercise]

Problem II: Airline Scheduling

Recall from beginning of lecture:

Graph: one node per start location of k planes: demand $b_u = -1$.
(can send out a plane).

two nodes for each flight.

(start node) cap = 1
lower bound = 1
end node

? must satisfy this flight!
End node t: demand = k (does not matter where end up).

Edges (apart from the per-flight edges).

- edge from start node to plane i to start node i
- or from end node i to start node j

If the same plane can go from one to the other satisfying the constraints, (enough time, etc.), cap = 1.

- finally: from all planes i and all end node i to t, cap = 1

Claim: A flow satisfying these demands (and using integer flows on all edges) can give an itinerary for all the k planes.

[Again: exercise]

⇒ can solve flight scheduling problem using Ford Fulkerson.

(+ reductions from previous parts).