PRIORITY QUEUES

- binary heaps
- d-ary heaps
- binomial heaps
- Fibonacci heaps
Priority queue data type

A min-oriented priority queue supports the following core operations:

- **MAKE-HEAP**: create an empty heap.
- **INSERT**\((H, x) \)**: insert an element \(x \) into the heap.
- **EXTRACT-MIN**\((H) \)**: remove and return an element with the smallest key.
- **DECREASE-KEY**\((H, x, k) \)**: decrease the key of element \(x \) to \(k \).

The following operations are also useful:

- **IS-EMPTY**\((H) \)**: is the heap empty?
- **FIND-MIN**\((H) \)**: return an element with smallest key.
- **DELETE**\((H, x) \)**: delete element \(x \) from the heap.
- **MELD**\((H_1, H_2) \)**: replace heaps \(H_1 \) and \(H_2 \) with their union.

Note. Each element contains a key (duplicate keys are permitted) from a totally-ordered universe.
Priority queue applications

Applications.

- A* search.
- Heapsort.
- Online median.
- Huffman encoding.
- Prim’s MST algorithm.
- Discrete event-driven simulation.
- Network bandwidth management.
- Dijkstra’s shortest-paths algorithm.
- ...

http://younginc.site11.com/source/5895/fos0092.html
Section 2.4

Priority Queues

- binary heaps
- d-ary heaps
- binomial heaps
- Fibonacci heaps
Complete binary tree

Binary tree. Empty or node with links to two disjoint binary trees.

Complete tree. Perfectly balanced, except for bottom level.

Property. Height of complete binary tree with n nodes is $\lceil \log_2 n \rceil$.

Pf. Height increases (by 1) only when n is a power of 2. □
A complete binary tree in nature

Hyphaene Compressa - Doum Palm

© Shlomit Pinter
Binary heap. Heap-ordered complete binary tree.

Heap-ordered tree. For each child, the key in child \geq key in parent.
Explicit binary heap

Pointer representation. Each node has a pointer to parent and two children.
- Maintain number of elements n.
- Maintain pointer to root node.
- Can find pointer to last node or next node in $O(\log n)$ time.
Implicit binary heap

Array representation. Indices start at 1.
- Take nodes in level order.
- Parent of node at k is at $\lfloor k / 2 \rfloor$.
- Children of node at k are at $2k$ and $2k + 1$.

```
  1
 /  \
 2   3
 / \
10  8
 / |
 4  6
/ | /|
12 18 11
 / | \
 8  5 19
/ | \
21 9 25
| | |
7 17 14
```
Binary heap demo

heap ordered

Binary heap demo

heap ordered

10

12

21

17

19

18

6

8

11

25

19
Binary heap: insert

Insert. Add element in new node at end; repeatedly exchange new element with element in its parent until heap order is restored.

![Binary heap diagram](image)
Binary heap: extract the minimum

Extract min. Exchange element in root node with last node; repeatedly exchange element in root with its smaller child until heap order is restored.
Binary heap: decrease key

Decrease key. Given a handle to node, repeatedly exchange element with its parent until heap order is restored.

decrease key of node x to 11

![Binary heap diagram]
Binary heap: analysis

Theorem. In an implicit binary heap, any sequence of m INSERT, EXTRACT-MIN, and DECREASE-KEY operations with n INSERT operations takes $O(m \log n)$ time.

Pf.

- Each heap op touches nodes only on a path from the root to a leaf; the height of the tree is at most $\log_2 n$.
- The total cost of expanding and contracting the arrays is $O(n)$. \blacksquare

Theorem. In an explicit binary heap with n nodes, the operations INSERT, DECREASE-KEY, and EXTRACT-MIN take $O(\log n)$ time in the worst case.
Binary heap: find-min

Find the minimum. Return element in the root node.
Binary heap: delete

Delete. Given a handle to a node, exchange element in node with last node; either swim down or sink up the node until heap order is restored.

delete node x or y

```
   6
  /  \
 7    10
 /  \
12   11
 /  \
21   17
   /  \
 9
```

last
Meld. Given two binary heaps H_1 and H_2, merge into a single binary heap.

Observation. No easy solution: $\Omega(n)$ time apparently required.
Binary heap: heapify

Heapify. Given n elements, construct a binary heap containing them.

Observation. Can do in $O(n \log n)$ time by inserting each element.

Bottom-up method. For $i = n$ to 1, repeatedly exchange the element in node i with its smaller child until subtree rooted at i is heap-ordered.
Theorem. Given n elements, can construct a binary heap containing those n elements in $O(n)$ time.

Pf.

- There are at most $\left\lceil n / 2^{h+1} \right\rceil$ nodes of height h.
- The amount of work to sink a node is proportional to its height h.
- Thus, the total work is bounded by:

\[
\sum_{h=0}^{\left\lceil \log_2 n \right\rceil} \left\lceil n / 2^{h+1} \right\rceil h \leq \sum_{h=0}^{\left\lceil \log_2 n \right\rceil} n h / 2^h \leq 2n \]

\[
\sum_{i=1}^{k} \frac{i}{2^i} = 2 - \frac{k}{2^k} - \frac{1}{2^{k-1}} \leq 2
\]

Corollary. Given two binary heaps H_1 and H_2 containing n elements in total, can implement MELD in $O(n)$ time.
Priority queues performance cost summary

<table>
<thead>
<tr>
<th>operation</th>
<th>linked list</th>
<th>binary heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>ISEMPTY</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>INSERT</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>DELETE</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>MELD</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>FIND-MIN</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>
Priority queues performance cost summary

Q. Reanalyze so that \texttt{EXTRACT-MIN} and \texttt{DELETE} take $O(1)$ amortized time?

<table>
<thead>
<tr>
<th>operation</th>
<th>linked list</th>
<th>binary heap</th>
<th>binary heap †</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{MAKE-HEAP}</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>\texttt{ISEMPTY}</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>\texttt{INSERT}</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>\texttt{EXTRACT-MIN}</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$ †</td>
</tr>
<tr>
<td>\texttt{DECREASE-KEY}</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>\texttt{DELETE}</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$ †</td>
</tr>
<tr>
<td>\texttt{MELD}</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>\texttt{FIND-MIN}</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

† amortized
CHAPTER 6 (2ND EDITION)

PRIORITY QUEUES

- binary heaps
- d-ary heaps
- binomial heaps
- Fibonacci heaps
Priority queues performance cost summary

<table>
<thead>
<tr>
<th>operation</th>
<th>linked list</th>
<th>binary heap</th>
<th>d-ary heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>IS.EMPTY</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>INSERT</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log_d n)$</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(d \log_d n)$</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log_d n)$</td>
</tr>
<tr>
<td>DELETE</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(d \log_d n)$</td>
</tr>
<tr>
<td>MELD</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>FIND-MIN</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

Goal. $O(\log n)$ INSERT, DECREASE-KEY, EXTRACT-MIN, and MELD.
A data structure is described which can be used for representing a collection of priority queues. The primitive operations are insertion, deletion, union, update, and search for an item of earliest priority.

Key Words and Phrases: data structures, implementation of set operations, priority queues, mergeable heaps, binary trees

CR Categories: 4.34, 5.24, 5.25, 5.32, 8.1
Def. A binomial tree of order k is defined recursively:

- Order 0: single node.
- Order k: one binomial tree of order $k - 1$ linked to another of order $k - 1$.
Binomial tree properties

Properties. Given an order k binomial tree B_k,

- Its height is k.
- It has 2^k nodes.
- It has $\binom{k}{i}$ nodes at depth i.
- The degree of its root is k.
- Deleting its root yields k binomial trees B_{k-1}, \ldots, B_0.

Pf. [by induction on k]
Binomial heap

Def. A **binomial heap** is a sequence of binomial trees such that:
- Each tree is heap-ordered.
- There is either 0 or 1 binomial tree of order k.

![Diagram of a binomial heap](image-url)
Binomial heap representation

Binomial trees. Represent trees using left-child, right-sibling pointers.

Roots of trees. Connect with singly-linked list, with degrees decreasing from left to right.
Binomial heap properties

Properties. Given a binomial heap with n nodes:

- The node containing the min element is a root of B_0, B_1, ..., or B_k.
- It contains the binomial tree B_i iff $b_i = 1$, where $b_k b_2 b_1 b_0$ is binary representation of n.
- It has $\leq \lceil \log_2 n \rceil + 1$ binomial trees.
- Its height $\leq \lceil \log_2 n \rceil$.

![Binomial heap diagram]

- $n = 19$
- # trees = 3
- height = 4
- binary = 10011
Binomial heap: meld

Meld operation. Given two binomial heaps H_1 and H_2, (destructively) replace with a binomial heap H that is the union of the two.

Warmup. Easy if H_1 and H_2 are both binomial trees of order k.
- Connect roots of H_1 and H_2.
- Choose node with smaller key to be root of H.
19 + 7 = 26

\[
\begin{array}{c}
1 \\
+ \\
0 \\
\hline
1 \\
1 \\
0 \\
1 \\
1 \\
0
\end{array}
\]
Binomial heap: meld

Meld operation. Given two binomial heaps H_1 and H_2, (destructively) replace with a binomial heap H that is the union of the two.

Solution. Analogous to binary addition.

Running time. $O(\log n)$.

Pf. Proportional to number of trees in root lists $\leq 2 \left(\lfloor \log_2 n \rfloor + 1 \right)$. □

19 + 7 = 26

\[
\begin{array}{ccc}
 & 1 & 1 & 1 \\
\hline
 1 & 0 & 0 & 1 & 1 \\
+ & 0 & 0 & 1 & 1 & 1 \\
\hline
 1 & 1 & 0 & 1 & 0 \\
\end{array}
\]
Extract-min. Delete the node with minimum key in binomial heap H.

- Find root x with min key in root list of H, and delete.
Binomial heap: extract the minimum

Extract-min. Delete the node with minimum key in binomial heap H.
- Find root x with min key in root list of H, and delete.
- $H' \leftarrow$ broken binomial trees.
- $H \leftarrow \text{MELD}(H', H)$.

Running time. $O(\log n)$.

![Diagram showing binomial heap structure with nodes and keys.]
Binomial heap: decrease key

Decrease key. Given a handle to an element x in H, decrease its key to k.
- Suppose x is in binomial tree B_k.
- Repeatedly exchange x with its parent until heap order is restored.

Running time. $O(\log n)$.
Binomial heap: delete

Delete. Given a handle to an element \(x \) in a binomial heap, delete it.

- **DECREASE-KEY**(\(H, x, -\infty \)).
- **DELETE-MIN**(\(H \)).

Running time. \(O(\log n) \).
Binomial heap: insert

Insert. Given a binomial heap H, insert an element x.

- $H' \leftarrow \text{MAKE-HEAP}(\)$.
- $H' \leftarrow \text{INSERT}(H', x)$.
- $H \leftarrow \text{MELD}(H', H)$.

Running time. $O(\log n)$.
Binomial heap: sequence of insertions

Insert. How much work to insert a new node x?
- If $n = \ldots 0$, then only 1 credit.
- If $n = \ldots 01$, then only 2 credits.
- If $n = \ldots 011$, then only 3 credits.
- If $n = \ldots 0111$, then only 4 credits.

Observation. Inserting one element can take $\Omega(\log n)$ time.

Theorem. Starting from an empty binomial heap, a sequence of n consecutive **INSERT** operations takes $O(n)$ time.

Pf.
\[
\frac{n}{2} \cdot 1 + \frac{n}{4} \cdot 2 + \frac{n}{8} \cdot 3 + \ldots \leq 2n.
\]

\[
\sum_{i=1}^{k} \frac{i}{2^i} = 2 - \frac{k}{2^k} - \frac{1}{2^{k-1}} \leq 2
\]
Binomial heap: amortized analysis

Theorem. In a binomial heap, the amortized cost of \textsc{Insert} is $O(1)$ and the worst-case cost of \textsc{Extract-Min} and \textsc{Decrease-Key} is $O(\log n)$.

Pf. Define potential function $\Phi(H_i) = \text{trees}(H_i) = \# \text{ trees in binomial heap } H_i$.
 - $\Phi(H_0) = 0$.
 - $\Phi(H_i) \geq 0$ for each binomial heap H_i.

Case 1. [\textsc{Insert}]
 - Actual cost $c_i = \text{ number of trees merged } + 1$.
 - $\Delta \Phi = \Phi(H_i) - \Phi(H_{i-1}) = 1 - \text{ number of trees merged}$.
 - Amortized cost = $\hat{c}_i = c_i + \Phi(H_i) - \Phi(H_{i-1}) = 2$.

Binomial heap: amortized analysis

Theorem. In a binomial heap, the amortized cost of **INSERT** is $O(1)$ and the worst-case cost of **EXTRACT-MIN** and **DECREASE-KEY** is $O(\log n)$.

Pf. Define potential function $\Phi(H_i) = trees(H_i) = \# \text{ trees in binomial heap } H_i$.

- $\Phi(H_0) = 0$.
- $\Phi(H_i) \geq 0$ for each binomial heap H_i.

Case 2. [**DECREASE-KEY**]

- Actual cost $c_i = O(\log n)$.
- $\Delta \Phi = \Phi(H_i) - \Phi(H_{i-1}) = 0$.
- Amortized cost $= \hat{c}_i = c_i = O(\log n)$.
Binomial heap: amortized analysis

Theorem. In a binomial heap, the amortized cost of \textsc{Insert} is $O(1)$ and the worst-case cost of \textsc{Extract-Min} and \textsc{Decrease-Key} is $O(\log n)$.

Pf. Define potential function $\Phi(H_i) = \text{trees}(H_i) =$ # trees in binomial heap H_i.

- $\Phi(H_0) = 0$.
- $\Phi(H_i) \geq 0$ for each binomial heap H_i.

Case 3. [\textsc{Extract-Min} or \textsc{Delete}]

- Actual cost $c_i = O(\log n)$.
- $\Delta \Phi = \Phi(H_i) - \Phi(H_{i-1}) \leq \Phi(H_i) \leq \lceil \log_2 n \rceil$.
- Amortized cost $= \hat{c}_i = c_i + \Phi(H_i) - \Phi(H_{i-1}) = O(\log n)$. □
Priority queues performance cost summary

<table>
<thead>
<tr>
<th>operation</th>
<th>linked list</th>
<th>binary heap</th>
<th>binomial heap</th>
<th>binomial heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make-Heap</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>isEmpty</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Insert</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$ †</td>
</tr>
<tr>
<td>Extract-Min</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>Decrease-Key</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>Delete</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>Meld</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$ †</td>
</tr>
<tr>
<td>Find-Min</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

† amortized

Hopeless challenge. $O(1)$ Insert, Decrease-Key and Extract-Min. Why?

Challenge. $O(1)$ Insert and Decrease-Key, $O(\log n)$ Extract-Min.
FIBONACCI HEAPS

- preliminaries
- insert
- extract the minimum
- decrease key
- bounding the rank
- meld and delete
Priority queues performance cost summary

<table>
<thead>
<tr>
<th>operation</th>
<th>linked list</th>
<th>binary heap</th>
<th>binomial heap</th>
<th>Fibonacci heap †</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>IS-EMPTY</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>INSERT</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>DELETE</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>MELD</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>FIND-MIN</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

† amortized

Ahead. $O(1)$ **INSERT** and **DECREASE-KEY**, $O(\log n)$ **EXTRACT-MIN**.
Fibonacci heaps

Theorem. [Fredman-Tarjan 1986] Starting from an empty Fibonacci heap, any sequence of \(m \) INSERT, EXTRACT-MIN, and DECREASE-KEY operations involving \(n \) INSERT operations takes \(O(m + n \log n) \) time.

Fibonacci Heaps and Their Uses in Improved Network Optimization Algorithms

MICHAEL L. FREDMAN

University of California, San Diego, La Jolla, California

AND

ROBERT ENDRÉ TARIAN

AT&T Bell Laboratories, Murray Hill, New Jersey

Abstract. In this paper we develop a new data structure for implementing heaps (priority queues). Our structure, Fibonacci heaps (abbreviated F-heaps), extends the binomial queues proposed by Vuillemin and studied further by Brown. F-heaps support arbitrary deletion from an \(n \)-item heap in \(O(\log n) \) amortized time and all other standard heap operations in \(O(1) \) amortized time. Using F-heaps we are able to obtain improved running times for several network optimization algorithms. In particular, we obtain the following worst-case bounds, where \(n \) is the number of vertices and \(m \) the number of edges in the problem graph:

1. \(O(n \log n + m) \) for the single-source shortest path problem with nonnegative edge lengths, improved from \(O(m \log \log m) \);
2. \(O(n^2 \log n + mn) \) for the all-pairs shortest path problem, improved from \(O(nm \log \log m + n^2) \);
3. \(O(n^2 \log n + mn) \) for the assignment problem (weighted bipartite matching), improved from \(O(nm \log \log m + n^2) \);
4. \(O(\beta(m, n) m) \) for the minimum spanning tree problem, improved from \(O(m \log \log m + n^2) \), where \(\beta(m, n) = \min \{ 1 \log^{10} n \leq m/n \} \). Note that \(\beta(m, n) = \log^* n \) if \(m \geq n \).

Of these results, the improved bound for minimum spanning trees is the most striking, although all the results give asymptotic improvements for graphs of appropriate densities.

this statement is a bit weaker than the actual theorem
Theorem. [Fredman–Tarjan 1986] Starting from an empty Fibonacci heap, any sequence of \(m \) \textsc{insert}, \textsc{extract-min}, and \textsc{decrease-key} operations involving \(n \) \textsc{insert} operations takes \(O(m + n \log n) \) time.

History.

- Ingenious data structure and application of amortized analysis.
- Original motivation: improve Dijkstra’s shortest path algorithm from \(O(m \log n) \) to \(O(m + n \log n) \).
- Also improved best-known bounds for all-pairs shortest paths, assignment problem, minimum spanning trees.