Lec 28: Random Walks and the Spectral Connection

\[G \rightarrow A \rightarrow D = \begin{pmatrix} d_1 & 0 \\ 0 & d_2 \\ \vdots & \ddots \end{pmatrix} \]

\[L = D - A \]

\[d_i = \text{degree of vertex } i \]

\[0 = \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n \]

\[G \text{ undirected Unweighted} \]

\[t = \text{exit} \]

\[X_t = \text{position of process at } t \]

\[X_{tn} = \text{uniformly random neighbor of } X_t \]

- \(o_1 \): cover time
- \(o_2 \): hitting time to target
- \(o_3 \): long-term density drift of \(X_t \)
- \(o_4 \): Why do I care?
0. $G =$ undirected / web graph
0. $G =$ Set all makeys / mbkp [G]

01. Cover time = expected time to see all vertices G
02. Hitting time (start s, target t) = expected time to hit t & start at s. $\approx O(mn)$
03. Limit distribution of random walk process $\mathbb{E}[X_T | X_0 = s] = \frac{du}{dx}$

[Diagram with nodes and edges labeled MCMC]
\[b^{(t)} = (b_1^{(t)}, \ldots, b_n^{(t)}) \subseteq [0,1]^n \quad \sum_i b_i^{(t)} = 1 \]

\[\text{Claim 1:} \quad \sum_j b_j^{(t)} = \frac{d_i}{\sum_j d_j} = \frac{d_i}{2m} \]

\[\implies b_i^{(t_n)} = \frac{d_i}{2m} \]

\[b_i^{(t_n)} = \mathbb{P}[X_{t_n} = i] = \sum_j \mathbb{P}[X_{t_n} = i \mid X_t = j] \mathbb{P}[X_t = j] \]

\[= \sum_j \left\{ \begin{array}{ll} \frac{d_j}{d_i} & \text{if } j \neq i \\ 0 & \text{otherwise} \end{array} \right\} \frac{d_j}{2m} \]

\[= \sum_i \frac{d_i}{2m} \cdot \frac{1}{d_i} = \frac{d_i}{2m} \]
$p^{(0)}$ as a row vector

Claim: $p^{(t+1)} = p(t) \cdot D^{-1} A$

Proof by algebra

\Rightarrow if p is fixed point

Then $p = p \cdot D^{-1} A \Rightarrow p \cdot (1 - D^{-1} A) = 0$

$\Leftrightarrow p \cdot D^{-1} (D - A) = 0$

$\Leftrightarrow p \cdot D^{-1}$ is an eigenvector of L

$\Rightarrow p \cdot D^{-1} = \lambda p \Rightarrow p \propto A \lambda$
\[|\phi_0\rangle = (1, 0, 0, \ldots, 0) \]

\[|\phi_0\rangle \rightarrow |\phi_1\rangle = |\phi_0\rangle D - A |\phi_0\rangle M \]

\[|\phi_0\rangle \rightarrow |\phi_0\rangle = |\phi_0\rangle M = |\phi_0\rangle M^2 \ldots \]

\[|\phi_0\rangle \rightarrow |\phi_0\rangle M^2 \rightarrow |\phi_0\rangle M^3 \rightarrow |\phi_0\rangle M^4 \rightarrow \ldots \]

\[\text{powers iteration} \]

\[\Rightarrow \text{can be used to show that} \]

\[\text{if } G \text{ is connected then and non-bip} \]

\[\sum_{i, j} |p_t^i - p_t^j| \leq \varepsilon \text{ after } t = \text{poly}(m, \log \frac{1}{\varepsilon}) \text{ steps} \]
\[(Lx)_i = ((D-A)x)_i = (Dx-Ax)_i \]

\[= d_i x_i - \sum_{j \in \mathcal{N}_i} x_j \]

\[= d_i \left[x_i - \frac{1}{d_i} \sum_{j \in \mathcal{N}_i} x_j \right] \]

\[\text{average of its neighbors} \]

\[\text{value} \]

\[\text{my value} \]

Laplacians arise in "averaging" type processes.
Sp. I am at v. What is the P_0 [hit t before s]

$$P_0 = 1$$

$$P_1 = 0$$

Boundary conditions:

$$u \neq s, \tau$$

$$P_u = \frac{1}{2} (P_{u+1}) + \frac{1}{2} P_{u-1}$$

$$\frac{1}{2} \sum_{y \neq u} P_y$$

$$V = IR$$

$$\phi_a - \phi_b = \frac{f a b}{x R a b}$$

ϕ flow around Ω, $u \neq s, t$