Hashing 2

Two-level hashing ("perfect hashing")

Let \(C(i) \) = num. of elements that gets mapped to location \(i \) (in the first level)

If Level 2 \(H_2 \) is \(C(i)^2 \) \(\rightarrow \) collision free for location \(i \)
Total table space for level 2

\[\Sigma_{i=1}^{M} c(i)^2 \]

We know

\[E[C] = \binom{N}{2} \frac{1}{M} \]

\[E \left[\Sigma_{i=1}^{M} c(i)^2 \right] = \binom{N}{2} \frac{1}{M} \]

\[E \left[\Sigma c(i)^2 - \Sigma c(i) \right] = O(N) \quad \text{(since } M = O(N)) \]

\[\Rightarrow E \left[\Sigma c(i)^2 \right] = O(N) \]

Collision-free and \(O(N) \) table space!
More stronger properties:

k-wise independent hash functions

Defn: $H : U \rightarrow [M]$ k-wise indep. if

for any k distinct keys x_1, \ldots, x_k and values $\alpha_1, \alpha_2, \ldots, \alpha_k$

$P \left(h(x_1) = \alpha_1 \cap h(x_2) = \alpha_2 \cap \ldots \cap h(x_k) = \alpha_k \right) \leq \frac{1}{M^k}$

$k = 2$, pair-wise indep.
Properties: \(H \) is \(k \)-wise indip for \(k \geq 2 \). Then

1. \(H \) is also \((k-1) \)-wise indip.

2. For any \(x \in U \) and \(a \in [M] \), \(P [h(x) = a] \leq \frac{1}{M} \)

3. \(H \) is universal

Pairwise indip vs. universal?

\(h(x) = Ax \)

Consider \(x = 0 \)

\(h(0) = 0 \)

To turn this into pairwise indip: \(h(x) = Ax + b \)
Open addressing
- Single array
- No separate D.S.
- Linear probing
- Use step-size

Quadratic

Cuckoo Hashing

Two tables T_1 & T_2
both of size $m = O(N)$

Two hash functions $h_1, h_2 \in H$
assume fully random
Insertion:
- \(x \) goes into either \(T_1[h_1(x)] \)
 or \(T_2[h_2(x)] \)

 Stop when no more bumps
 or if more than
 \(\geq \log N \) bumps & rehash

Query:
\(O(1) \) only 2 locations.
Thm. The expected time to perform insert is $O(1)$ if $M \geq 4N$

Proof Sketch:

- **Cuckoo graph** G_L.
 - M vertices: hash table locations.
 - Edges: correspond to the items to be inserted.

 If $x \in S$, $e_x = (h_1(x), h_2(x))$ for all
"y" can get bumped out when inserting a new element x if y falls in a path in the cuckoo graph starting from h₁(x) or h₂(x).

Def: Bucket of x
\[B(x) = \text{set of nodes of } G \text{ reachable from } h₁(x) \text{ or } h₂(x) \]

Random
\[= \text{connected component of } G \text{ with edge } ex \]

\[E[\text{insertion time of } x] = E[|B(x)|] \]

Size = 1 \[B(x) \]
To show: \(E[|B(x)|] \leq O(1) \)

\[
E[|B(x)|] = \sum_{y \neq x} p[e_y \in B(x)]
\]

\[
\leq N \sum_{y \neq x} p[e_y \in B(x)]
\]

Sufficient to show

\[
p[e_y \in B(x)] \leq O(\frac{1}{M}) \quad \text{if} \quad M \geq 4N.
\]
Lemma: For any $i, j \in \{1, M\}$

\[P[\text{there exists a path of length } l \text{ between } i \text{ and } j \text{ in the graph}] \leq \frac{1}{2^l M} \]

Proof: (exercise)

For $l = 1$...

Then use induction.
To show: \(P(\{y \in B(x)\}) \leq \Theta\left(\frac{1}{M}\right) \)

Proof: Using the lemma

\[
P(\{y \in B(x)\}) \leq \frac{1}{2^r M}
\]

\[
= O\left(\frac{1}{M}\right)
\]

\(M > 4N \)
Application: Bloom Filter

Membership query

Room for mistakes:

Only false positives

but no false negatives

Useful for ‘filter operations’ - typically elements not in the set

Space efficient data structure for approximate membership queries
. Array T of M bits

. k hash functions $h_1, h_2, \ldots, h_k : V \rightarrow [M]$

 (Assume completely random)

Adding a key:

$x \in S$ set bits $T[h_1(x)], T[h_2(x)] \ldots T[h_k(x)]$ to 1

Membership query: check locations

$x : T[h_1(x)] \ldots T[h_k(x)]$
Let $p = \text{prob. that a bit in } T \text{ is not set}

$$p = \left(1 - \frac{1}{3^{1/n}}\right)^k = (1-p)^k$$

Assume $k \geq \frac{1}{\log(1/p)}$ for all k bits set.
\[
\frac{d}{dh}(___) = 0 \quad \text{(Exercise)}
\]

False positive prob. minimized

\[
k = \frac{M \ln 2}{N}
\]

\[
\varepsilon = \left(\frac{1}{2}\right)^{\frac{M \ln 2}{N}}
\]

\[
M = 1.44 \log \left(\frac{1}{\varepsilon}\right)
\]
For 1% false positive:

\[M = 10N \text{ bits} \]
\[k = 7 \]