Setting:

Universe U = set of all possible values

Subset S = interested in this subset

$|S| = N$

w.h.p. elements from S have small number of collisions

$x, y \in S$

$\exists \text{ collision } \Rightarrow h(x) = h(y)$
What is random?

1. inputs
2. hash function

E.g. NTP switch: IP address X.X.X.X

Assume a family of hash functions \(H \)

When time to hash "S", we choose a random function

\(h \in H \)
\[M = \text{table size} \]
\[\{M\} = \{0, 1, \ldots, M-1\} \]

What properties?

1. Small probability of distinct keys colliding:
 \[\text{If } x \neq y, \quad P[h(x) = h(y)] \text{ is "small"} \]

2. \(h \) is easy to compute

3. \(h \) is easy to store (small num of bits)

4. \(M \) is small \(\Rightarrow \) (hash table size is small)
Ideal Hash Function

Perfectly random:
for each \(x \in S \), \(h(x) = \) a uniformly random location in \([M]\)

Properties:
- Low collision prob. \(P[h(x) = h(y)] = \frac{1}{M} \) for any \(x \neq y \)
- Even conditioned on hashed values for any other subset \(A \) of \(S \)

Downsides:
- Too large to store
- Compute: table look up
Universal Hash Functions

Captures the property of non-collision of two distinct elements.

Defn: A family \(\{ h \} \) of hash functions mapping \(U \rightarrow [m] \) is universal if for any \(x \neq y \)

\[
P[h(x) = h(y)] \leq \frac{1}{M}
\]

needs to hold for every pair \(x \leq y, x \neq y \)
Simple construction of universal hashing:

Let $|U| = 2^u$ elements are (vectors of length u).

Let $|M| = 2^m$.

Let A be binary matrix

A is a uniform random binary matrix.

For any $x \in U$, $h(x) := Ax \mod 2^m$.

Q: How many hash functions?

2^m
Thm. This family of hash function is universal.

Proof:

\[h(x) = h(y) \quad \text{where} \ x \neq y \]

\[A \cdot x = A \cdot y \]

\[A \cdot (x - y) = 0 \]

\[A \cdot z = 0 \quad \text{for} \ z \neq 0 \]

\[\text{To show:} \quad P(Az = 0) \leq \frac{1}{m} \quad \text{for any} \ z \neq 0 \]

\[Az = 0 \quad \Rightarrow \quad \sum A \cdot z_j = 0 \]

\[m \times n \]

\[\begin{bmatrix} A_1 & A_2 & \cdots & A_n \end{bmatrix} \]

\[\text{Length in} \]

\[\begin{bmatrix} z_1 \end{bmatrix} \]

\[\begin{bmatrix} z_2 \end{bmatrix} \]

\[\begin{bmatrix} z_k \end{bmatrix} \]
Let \(z_{i*} \neq 0 \) (there exists \(i^* \) : \(z_{i^*} = z \neq 0 \))

\[A_{z} = 0 \quad A_{z} = 0 \]

\[\Rightarrow \quad A_{i*} = -\sum_{j \neq i^*} A_{j} z_{j} \]

\[p(A_{z} = 0) = p (A_{i^*} = -\sum_{j \neq i^*} A_{j} z_{j}) \]

\[= \left(\frac{1}{2} \right)^m \]

\[= \frac{1}{M} \]

\[\sum_{j \neq i^*} A_{j} z_{j} \]

\[A_{i^*} z_{i^*} = -\sum_{j \neq i^*} A_{j} z_{j} \]
Application 1: Hash tables

Closed addressing

Open addressing

Look up time: number of collisions.

Let \(C_x \) = number of other elements mapped to the value where \(x \) is mapped to.

\[
L_x = C_x + 1
\]

\[
E[L_x] = E[C_x] + 1 = \frac{(N-1)}{M} + 1
\]

\[
E[L_x] \leq 2
\]

If \(M \geq N \)
Let $C =$ total number of collisions.

$$E[C] \leq \binom{N}{2} \cdot \frac{1}{M} \cdot \frac{N(N-1)}{2}$$

Collision-free hash table?

If $M \geq N^2$

$$P\left[\text{there exists a collision}\right] = \frac{1}{2}$$

Repeat the expr to get collision-free \(\Rightarrow \) Const. look-up time in worst-case

Downside: $M \geq N^2$

Q. Can we get collision-free with $M = O(N)$?