Lecture 7

More Examples of Data Flow Analysis: Global Common Subexpression Elimination; Constant Propagation/Folding

I. Available Expressions Analysis

II. Eliminating CSEs

III. Constant Propagation/Folding

[ALSU 9.2.6, 9.4]

Review: A Check List for Data Flow Problems

- **Semi-lattice**
 - set of values \(V \)
 - meet operator \(\land \)
 - Top \(T \)
 - finite descending chain?

- **Transfer functions**
 - function of a basic block \(f: V \rightarrow V \)
 - closed under composition
 - meet-over-paths MOP
 - monotone
 - distributive?

For each node \(n \): \(\text{MOP}(n) = \land f_p(T) \), for all paths \(p \), reaching \(n \)

If data flow framework is **monotone** (i.e., \(x \leq y \) implies \(f(x) \leq f(y) \)) then if the algorithm converges, \(\text{IN}[n] \leq \text{MOP}[b] \)

If data flow framework is **distributive** (i.e., \(f(x \land y) = f(x) \land f(y) \)) then if the algorithm converges, \(\text{IN}[n] = \text{MOP}[b] \)

Example: MOP considers more paths than Ideal

Ideal: Considers only 2 paths
- B1-B2-B4-B6-B7 (i.e., \(x=1 \))
- B1-B3-B4-B5-B7 (i.e., \(x=0 \))

MOP: Also considers unexecuted paths
- B1-B2-B4-B5-B7
- B1-B3-B4-B6-B7

Assume: B2 & B3 do not update x
Review: A Check List for Data Flow Problems

- **Semi-lattice**
 - set of values V
 - meet operator \lor
 - Top T
 - finite descending chain?

- **Transfer functions**
 - function of a basic block $f: V \rightarrow V$
 - closed under composition
 - meet-over-paths MOP
 - monotone
 - distributive?

- **Algorithm**
 - initialization step (entry/exit, other nodes)
 - visit order: rPostOrder
 - depth of the graph

Global Common Subexpressions

- **Availability of an expression E at point P**
 - DEFINITION: Along every path to P in the flow graph:
 - E must be evaluated at least once
 - no variables in E redefined after the last evaluation
 - Observation: E may have different values on different paths (e.g., $x+y$ above)

Available Expressions Example

- Is $4i$ available at this point?

Formulating the Problem

- **Domain:**
 - a bit vector, with a bit for each **textually unique** expression in the program
 - Forward or Backward? Forward
 - Lattice Elements? All bit vectors of given length
 - Meet Operator? Elementwise-min
 - Partial Ordering
 - Top?
 - Bottom?
 - Boundary condition: entry/exit node?
 - Initialization for iterative algorithm?

- **Meet Operator:**
 - Elementwise-min

- **Partial Ordering:**
 - Top?
 - Bottom?
 - Boundary condition: entry/exit node?
 - Initialization for iterative algorithm?

- **Meet Operator:**
 - Intersection
Transfer Functions

• Can use the same equation as reaching definitions
 • \(\text{out}(b) = \text{gen}(b) \cup (\text{in}(b) - \text{kill}(b)) \)

• Start with the transfer function for a single instruction
 • When does the instruction generate an expression?
 • When does it kill an expression?

• Calculate transfer functions for complete basic blocks
 • Compose individual instruction transfer functions

<table>
<thead>
<tr>
<th>Statement</th>
<th>Available Expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a = b + c)</td>
<td>({ })</td>
</tr>
<tr>
<td>(b = a - d)</td>
<td>({ b + c })</td>
</tr>
<tr>
<td>(c = b + d)</td>
<td>({ a-d })</td>
</tr>
<tr>
<td>(d = a - d)</td>
<td>({ })</td>
</tr>
</tbody>
</table>

Initialization for Interior Nodes

\[\text{out}(b) = \text{gen}(b) \cup (\text{in}(b) - \text{kill}(b)) \]

T = \{e1, e2\}
\[\{e1\} \quad \{e2\} \quad \{\} \]
Meet Operator: Intersection

- What if initialize \(\text{out}(B2) = \{\} \)? Incorrect: in(B2)=c
- What if initialize \(\text{out}(B2) = \{\} \)? Correct: in(B2)=out(B1)
- Initialize \(\text{out}(b) = \{\} \) for all interior b

Composing Transfer Functions

• Derive the transfer function for an entire block

\[\text{in}1 \]
\[\text{out}1 = \text{gen}1 \cup (\text{in}1 - \text{kill}1) = \text{in}2 \]
\[\times \]
\[\text{out}2 = \text{gen}2 \cup (\text{in}2 - \text{kill}2) \]

• Since \(\text{out}1 = \text{in}2 \) we can simplify:
 - \(\text{out}2 = \text{gen}2 \cup (\text{gen}1 \cup (\text{in}1 - \text{kill}1)) - \text{kill}2 \)
 - \(\text{out}2 = \text{gen}2 \cup (\text{gen}1 - \text{kill}2) \cup (\text{in}1 - (\text{kill}1 \cup \text{kill}2)) \)
 - \(\text{out}2 = \text{gen}2 \cup (\text{gen}1 - \text{kill}2) \cup (\text{in}1 - (\text{kill}1 \cup \text{kill}2)) \)

• Result
 - \(\text{gen} = \text{gen}2 \cup (\text{gen}1 - \text{kill}2) \)
 - \(\text{kill} = \text{kill}2 \cup (\text{kill}1 - \text{gen}2) \)

II. Eliminating CSEs

• Available expressions (across basic blocks)
 - provides the set of expressions available at the start of a block

• Value Numbering (within basic block)
 - Initialize Values table with available expressions

• If CSE is an "available expression", then transform the code
 - Original destination may be:
 • a temporary register
 • overwritten
 • different from the variables on other paths
 - One solution: Copy the expression to a new variable at each evaluation reaching the redundant use
Review: Value Numbering

\[
\begin{align*}
 a &= b + c \\
 b &= a - d \\
 c &= b + c \\
 d &= a - d
\end{align*}
\]

Example Revisited

\[
\begin{align*}
 t_1 &= b + c \\
 a &= t_1 \\
 t_2 &= t_1 - d \\
 b &= t_2 \\
 t_3 &= t_2 + c \\
 c &= t_3 \\
 t_4 &= t_2 + c \\
 c &= t_3 \\
 d &= t_2
\end{align*}
\]

Limitation: Textually Identical Expressions

- Commutative operations:

\[
\begin{align*}
 \text{add } t_1 &= x, y \\
 \text{add } t_2 &= y, x \\
 \text{add } t_3 &= x, y
\end{align*}
\]

- sort the operands

Further Improvements

- Examples:
 - Expressions with more than two operands:

\[
\begin{align*}
 \text{add } t_1 &= x, y \\
 \text{add } t_2 &= t_1, z \\
 \text{add } t_3 &= y, x \\
 \text{add } t_4 &= t_3, x \\
 \text{add } t_5 &= t_3, x \\
 \text{add } t_6 &= t_5, z
\end{align*}
\]

- Textually different expressions may be equivalent:

\[
\begin{align*}
 \text{add } t_1 &= x, y \\
 \text{beq } t_1, t_2, l_1 \\
 \text{cpy } z &= x \\
 \text{add } t_3 &= z, y
\end{align*}
\]

Use multiple passes of GCSE combined with copy propagation
Summary

<table>
<thead>
<tr>
<th>Reaching Definitions</th>
<th>Available Expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
<td>Sets of definitions</td>
</tr>
<tr>
<td></td>
<td>Sets of expressions</td>
</tr>
<tr>
<td>Transfer function</td>
<td>Generate U Propagate</td>
</tr>
<tr>
<td>direction of function</td>
<td>forward: out(b) = f(in(b))</td>
</tr>
<tr>
<td>Generate</td>
<td>Gen_n: expressions evaluated</td>
</tr>
<tr>
<td>Propagate</td>
<td>n(b)-KILL_n: definitions killed</td>
</tr>
<tr>
<td>Meet operation</td>
<td>U (in(b)+out(predecessors))</td>
</tr>
<tr>
<td>Initialization</td>
<td>out(entry) = Ø</td>
</tr>
<tr>
<td></td>
<td>out(b) = Ø</td>
</tr>
</tbody>
</table>

III. Constant Propagation/Folding

- At every basic block boundary, for each variable v
 - determine if v is a constant
 - if so, what is the value?

```
\( \text{e} = 1 \)
\( \text{e, x, m are each a constant value} \)
\( \text{x} = 2 \)
\( \text{m} = \text{x} + \text{e} \)
\( \text{e} = 3 \)
```

```
\( \text{e, x, m are each a constant value} \)
\( \text{e} = 1 \)
\( \text{m} = \text{x} + \text{e} \)
\( \text{e} = 3 \)
```

Equivalent Definition

- Meet Operation:

```
<table>
<thead>
<tr>
<th>v1</th>
<th>v2</th>
<th>v1 \land v2</th>
</tr>
</thead>
<tbody>
<tr>
<td>undef</td>
<td>undef</td>
<td>undef</td>
</tr>
<tr>
<td>c_2</td>
<td>c_2</td>
<td>c_2</td>
</tr>
<tr>
<td>NAC</td>
<td>NAC</td>
<td>NAC</td>
</tr>
<tr>
<td>c_1</td>
<td>undef</td>
<td>c_1</td>
</tr>
<tr>
<td>c_2</td>
<td>c_2</td>
<td>c_2 (if c_1 \leq c_2)</td>
</tr>
<tr>
<td>NAC</td>
<td>NAC</td>
<td>NAC</td>
</tr>
<tr>
<td>NAC</td>
<td>NAC</td>
<td>NAC</td>
</tr>
</tbody>
</table>
```

- Note: \(\text{undef} \land c_2 = c_2 \)
Example

\[
x = \text{UNDEF} \\
x = 2 \\
x = 2 \\
x = \text{UNDEF} \\
p = x
\]

Transfer Function

• Assume a basic block has only 1 instruction
• Let \(\text{IN}[b, x] \), \(\text{OUT}[b, x] \)
 – be the information for variable \(x \) at entry and exit of basic block \(b \)
• \(\text{OUT}[\text{entry}, x] = \text{undef} \), for all \(x \).
• Non-assignment instructions: \(\text{OUT}[b, x] = \text{IN}[b, x] \)
• Assignment instructions: (next page)

Constant Propagation (Cont.)

• Let an assignment be of the form \(x_3 = x_1 + x_2 \)
 • “+” represents a generic operator
 • \(\text{OUT}[b, x] = \text{IN}[b, x] \), if \(x \neq x_1 \)

<table>
<thead>
<tr>
<th>(\text{IN}[b, x_1])</th>
<th>(\text{IN}[b, x_2])</th>
<th>(\text{OUT}[b, x_3])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{undef})</td>
<td>(\text{undef})</td>
<td>(\text{undef})</td>
</tr>
<tr>
<td>(c_1)</td>
<td>(c_2)</td>
<td>(c_1 + c_2)</td>
</tr>
<tr>
<td>(\text{NAC})</td>
<td>(\text{NAC})</td>
<td>(\text{NAC})</td>
</tr>
<tr>
<td>(c_1)</td>
<td>(c_2)</td>
<td>(NAC)</td>
</tr>
<tr>
<td>(\text{NAC})</td>
<td>(\text{NAC})</td>
<td>(\text{NAC})</td>
</tr>
</tbody>
</table>

• Use: \(x \leq y \) implies \(f(x) \leq f(y) \) to check if framework is monotone
 • \([v_1, v_2, \ldots] \leq [v'_1, v'_2, \ldots] \), \(f([v_1, v_2, \ldots]) \leq f([v'_1, v'_2, \ldots]) \)

Distributive?

\[
x = 2 \\
y = 3 \\
x = 3 \\
y = 2 \\
z = x + y
\]

• Not Distributive
• Iterative solution is not precise!
 – it is also not wrong
 – it is conservative
Summary of Constant Propagation

- A useful optimization
- Illustrates:
 - abstract execution
 - an infinite semi-lattice
 - a non-distributive problem

Monday’s Class

- Static Single Assignment (SSA) [ALSU 6.2.4]