Lecture 6
Foundations of Data Flow Analysis

I. Meet Operator
II. Transfer Functions
III. Correctness, Precision, Convergence
IV. Efficiency

• Reference: ALSU pp. 613-631
• Background: Hecht and Ullman, Kildall, Allen and Cocke[76]

Review: Reaching Definitions

<table>
<thead>
<tr>
<th>Block</th>
<th>Gen</th>
<th>Kill</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>{1,2}</td>
<td>{3,4,5}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Review: Live Variable Analysis

• A variable \(v \) is **live** at point \(p \) if
 - the value of \(v \) is used along some path in the flow graph starting at \(p \).
• A basic block \(b \) can
 - generate live variables: Use[\(b \)]
 - set of locally exposed uses in \(b \)
 - propagate incoming live variables: OUT[\(b \)] \(\cup \) Def[\(b \)]
 - where Def[\(b \)] = set of variables defined in \(b \).
• Backward analysis
 - transfer function for block \(b \):
 \[\text{in}[b] = \text{Use}[b] \cup \text{out}(b) \cup \text{Def}[b] \]
• meet operator:
 \[\text{out}[b] = \text{in}[s_1] \cup \text{in}[s_2] \cup \cdots \cup \text{in}[s_n], \]
 where \(s_1, \ldots, s_n \) are all successors of \(b \)

Review: Data Flow Analysis Framework

<table>
<thead>
<tr>
<th>Domain</th>
<th>Sets of definitions</th>
<th>Sets of variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward</td>
<td>out[(b)] = Gen[(b)] (\cup) in[(b)] (\land) pred[(b)]</td>
<td>in[(b)] = out[(b)] (\cup) in[(b)] (\land) succ[(b)]</td>
</tr>
<tr>
<td>Backward</td>
<td>in[(b)] = Gen[(b)] (\cup) out[(b)]</td>
<td>out[(b)] = in[(b)] (\cup) succ[(b)]</td>
</tr>
<tr>
<td>Transfer function</td>
<td>Gen[(b)] (\cup) in[(b)] (\land) pred[(b)]</td>
<td>out[(b)] = in[(b)] (\cup) succ[(b)]</td>
</tr>
<tr>
<td>Meet Operation</td>
<td>(\cup)</td>
<td>(\cup)</td>
</tr>
<tr>
<td>Boundary Condition</td>
<td>out[entry] = (\emptyset)</td>
<td>in[exit] = (\emptyset)</td>
</tr>
<tr>
<td>Initial interior points</td>
<td>out[(b)</td>
<td>in[(b)</td>
</tr>
</tbody>
</table>
A Unified Framework

- Data flow problems are defined by
 - Domain of values: \(V \)
 - Meet operator: \((V, \wedge, \top, \bot) \), initial value
 - A set of transfer functions: \(V \rightarrow V \)

- Usefulness of unified framework
 - To answer questions such as correctness, precision, convergence, speed of convergence for a family of problems
 - If meet operators and transfer functions have properties \(X \), then we know \(Y \) about the above.
 - Reuse code

Overview: A Check List for Data Flow Problems

- Semi-lattice
 - set of values
 - meet operator
 - top, bottom
 - finite descending chain?

- Transfer functions
 - function of each basic block
 - monotone
 - distributive?

- Algorithm
 - initialization step (entry/exit, other nodes)
 - visit order: rPostOrder
 - depth of the graph

I. Meet Operator

- Properties of the meet operator
 - commutative: \(x \wedge y = y \wedge x \)
 - idempotent: \(x \wedge x = x \)
 - associative: \(x \wedge (y \wedge z) = (x \wedge y) \wedge z \)
 - there is a Top element \(T \) such that \(x \wedge T = x \)

- Meet operator defines a partial ordering on values
 - \(x \preceq y \) if and only if \(x = y \) \(\text{[y \rightarrow x in diagram]} \)
 - Transitivity: if \(x \preceq y \) and \(y \preceq z \) then \(x \preceq z \)
 - Antisymmetry: if \(x \preceq y \) and \(y \preceq x \) then \(x = y \)
 - Reflexivity: \(x \preceq x \)

- Partial Order

 \[\begin{array}{c}
 T = (1,1) \\
 (1,0) \\
 (0,1) \\
 (0,0) \\
 \end{array} \]

Meet Operator: Elementwise-min

Meet Operator: Intersection

Meet Operator: Union

- Top and Bottom elements
 - Top \(T \) such that: \(x \wedge T = x \)
 - Bottom \(\bot \) such that: \(x \wedge \bot = \bot \)

- Values and meet operator in a data flow problem define a semi-lattice:
 - there exists a \(T \), but not necessarily a \(\bot \)
 - \(x, y \) are ordered: \(x \preceq y \) \(\text{[y \rightarrow x in diagram]} \)
 - what if \(x \) and \(y \) are not ordered?
 - \(x \wedge y \leq x, x \wedge y \leq y, \) and if \(w \leq x, w \leq y \), then \(w \leq x \wedge y \)
One vs. All Variables/Definitions

- Lattice for each variable: e.g. intersection

• Lattice for three variables:

```
+----------------+----------------+----------------+
|                 |      |                 |
|                 |      |                 |
|                 |      |                 |
|                 |      |                 |
+----------------+----------------+----------------+
```

III. Transfer Functions

- Basic Properties \(f : V \rightarrow V \)
 - Has an identity function
 • There exists an \(f \) such that \(f(x) = x \), for all \(x \).
 - Closed under composition
 • if \(f_1, f_2 \in F \), then \(f_1 \circ f_2 \in F \)

 out[b] = Gen[b] U (in(b)-Kill[b])

Monotonicity

- A framework \(\langle F, V, \circ \rangle \) is monotone if and only if
 • \(x \leq y \) implies \(f(x) \leq f(y) \)
 • i.e. a “smaller or equal” input to the same function will always give a “smaller or equal” output
 - Equivalently, a framework \(\langle F, V, \circ \rangle \) is monotone if and only if
 • \(f(x \circ y) \leq f(x) \circ f(y) \)
 • i.e. merge input, then apply \(f \) is small than or equal to apply the transfer function individually and then merge the result

```
out[b] = Gen[b] U (in(b)-Kill[b])
```

Descending Chain

- Definition
 • The height of a lattice is the largest number of \(> \) relations that will fit in a descending chain.

\[x_0 > x_1 > x_2 > \ldots \]

- Height of values in reaching definitions?
 Height-\(n \), where \(n \) is the number of definitions

- Important property: finite descending chain
 • Can an infinite lattice have a finite descending chain? yes
 • Example: Constant Propagation/Folding
 • To determine if a variable is a constant
 - Data values
 • undef, ... -1, 0, 1, 2, ..., not-a-constant
Example

- Reaching definitions: \(f(x) = \text{Gen} \cup (x \cdot \text{Kill}) \land \) \(\bigwedge \)
 - Definition 1:
 - \(x_1 \leq x_2, \text{Gen} \cup (x_1 \cdot \text{Kill}) \leq \text{Gen} \cup (x_2 \cdot \text{Kill}) \)
 - Definition 2:
 - \((\text{Gen} \cup (x_1 \cdot \text{Kill})) \lor (\text{Gen} \cup (x_2 \cdot \text{Kill})) = (\text{Gen} \cup ((x_1 \cup x_2) \cdot \text{Kill})) \)

- Note: Monotone framework does not mean that \(f(x) \leq x \)
 - e.g., reaching definition for two definitions in program
 - suppose: \(f_{x_1}: \text{Gen} \cdot x_1 = \{d_1, d_2\} ; \text{Kill} \cdot x_1 = {} \)
 - then \(f(x) = \{d_1, d_2\} \) for any \(x \), including \(x = {} \)

- If input(second iteration) \(\leq \) input(first iteration)
 - result(second iteration) \(\leq \) result(first iteration)

Meet-Over-Paths (MOP)

- Err in the conservative direction
- Meet-Over-Paths (MOP):
 - For each node \(n \):
 - \(\text{MOP}(n) = \bigwedge \mathcal{P}_n(T) \), for all paths \(\mathcal{P}_n \) reaching \(n \)
 - a path exists as long there is an edge in the code
 - consider more paths than necessary
 - \(\text{MOP} = \text{Perfect-Solution} \land \text{Solution-to-Unexecuted-Paths} \)
 - \(\text{MOP} \leq \text{Perfect-Solution} \)
 - Potentially more constrained, solution is small
 - hence conservative
 - It is not safe to be > Perfect-Solution!
 - Desirable solution: as close to MOP as possible

Distributivity

- A framework \((\mathcal{P}, \mathcal{V}, \land) \) is distributive if and only if
 - \(f(x \land y) = f(x) \land f(y) \)
 - i.e. merge input, then apply \(f \) is equal to apply the transfer function individually then merge result
 - Example: Constant Propagation is NOT distributive

III. Data Flow Analysis

- Definition
 - Let \(f_0, ..., f_n : \mathcal{P} \) where \(f_i \) is the transfer function for node \(i \)
 - \(f_0 = f_{a_0} \leftarrow f_{a_0} \), where \(p \) is a path through nodes \(n_0, ..., n_k \)
 - \(f_0 \) = identify function, if \(p \) is an empty path
 - Ideal data flow answer:
 - For each node \(n \):
 - \(\bigwedge f_{a_0}(T) \), for all possibly executed paths \(\mathcal{P}_n \) reaching \(n \).

- But: Determining all possibly executed paths is undecidable
Example: MOP considers more paths than Ideal

Ideal: Considers only 2 paths
- B1-B2-B4-B6-B7 (i.e., x=1)
- B1-B3-B4-B5-B7 (i.e., x=0)

MOP: Also considers unexecuted paths
- B1-B2-B4-B5-B7
- B1-B3-B4-B6-B7

Assume: B2 & B3 do not update x

Solving Data Flow Equations

- **Example: Reaching definitions**
 - out[entry] = {}
 - Values = (subsets of definitions)
 - Meet operator: \(\cup \)
 - \(in(b) = \bigcup out(p) \) for all predecessors \(p \) of \(b \)
 - Transfer functions: \(out(b) = gen_b \cup \bigcup \{ in(b) \setminus kill_b \} \)

- Any solution satisfying equations = **Fixed Point Solution (FP)**

- **Iterative algorithm**
 - initializtes out[b] to {}
 - if converges, then it computes Maximum Fixed Point (MFP):
 - MFP is the largest of all solutions to equations

- **Properties**:
 - FP \(\leq \) MFP \(\leq \) MOP \(\leq \) Perfect-solution
 - FR, MFP are safe
 - in(b) \(\leq \) MOP(b)

Partial Correctness of Algorithm

- If data flow framework is **monotone** (i.e., \(x \leq y \) implies \(f(x) \leq f(y) \))
 - then if the algorithm converges, \(IN[b] \leq MOP[b] \)

- **Proof**: Induction on path lengths
 - Define \(IN[entry] = OUT[entry] \)
 - and transfer function of entry = Identity function
 - Base case: path of length 0
 - Proper initialization of \(IN[entry] \)
 - If true for path of length \(k \), \(p_k = (n_1, \ldots, n_k) \), then true for path of length \(k+1 \): \(p_k+1 = (n_1, \ldots, n_{k+1}) \)
 - Assume: \(IN[n_k] \leq f_{n_k}(IN[n_k] \setminus \cdots \setminus f_{n_1}(IN[entry])) \)
 - \(IN[n_{k+1}] = OUT[n_k] \land \cdots \leq OUT[n_k] = f_{n_k}(IN[n_k]) \)
 - \(\leq f_{n_k}(IN[n_k] \setminus \cdots \setminus f_{n_1}(IN[entry])) = \text{by inductive assumption & monotonicity} \)

Precision

- If data flow framework is **distributive** (i.e., \(f(x \land y) = f(x) \land f(y) \))
 - then if the algorithm converges, \(IN[b] = MOP[b] \)

- Monotone but not distributive: behaves as if there are additional paths

```
\begin{align*}
a &= 2 \\
b &= 3 \\
c &= a + b &= 5
\end{align*}
```
Additional Property to Guarantee Convergence

- Data flow framework (monotone) converges if there is a finite descending chain

- For each variable \(\text{IN}[b] \), \(\text{OUT}[b] \), consider the sequence of values set to each variable across iterations:
 - if sequence for \(\text{IN}[b] \) is monotonically decreasing
 - sequence for \(\text{OUT}[b] \) is monotonically decreasing
 - \(\text{OUT}[b] \) initialized to \(T \)
 - if sequence for \(\text{OUT}[b] \) is monotonically decreasing
 - sequence of \(\text{IN}[b] \) is monotonically decreasing

IV. Speed of Convergence

- Speed of convergence depends on order of node visits
- Reverse “direction” for backward flow problems

Reverse Postorder

- **Step 1: depth-first post order**
  ```
  main() {
    count = 1;
    Visit(root);
  }
  Visit(n) {
    for each successor s that has not been visited
      Visit(s);
    PostOrder(n) = count;
    count = count+1;
  }
  ```

- **Step 2: reverse order**
  ```
  rPostOrder(i) = NumNodes - PostOrder(i)
  ```

Depth-First Iterative Algorithm (forward)

Input: control flow graph \(\text{CFG} = (N, E, \text{Entry}, \text{Exit}) \)

/* Initialize */
- \(\text{OUT}[\text{Entry}] = \text{init_value} \)
- For all nodes \(i \)
 - \(\text{OUT}[i] = T \)
 - \(\text{Change} = \text{True} \)

/* iterate */
- While \(\text{Change} \) is not false
 - For each node \(i \) in \(rPostOrder \)
 - \(\text{in}[i] = \land (\text{OUT}[p]) \), for all predecessors \(p \) of \(i \)
 - \(\text{oldout} = \text{OUT}[i] \)
 - \(\text{OUT}[i] = f_i(\text{IN}[i]) \)
 - \(\text{if} \) \(\text{oldout} \neq \text{OUT}[i] \)
 - \(\text{Change} = \text{True} \)

```
Speed of Convergence

- If cycles do not add information
- Information can flow in one pass down a series of nodes of increasing order number:
  - \(1 \rightarrow 4 \rightarrow 5 \rightarrow 7 \rightarrow 2 \rightarrow 4\) ...
  - First pass
- Passes determined by number of back edges in the path
  - Essentially the nesting depth of the graph
- Number of iterations = number of back edges in any acyclic path + 2
  - (2 are necessary even if there are no cycles)
  - (2 not 1 since need a last pass where nothing changed)
- What is the depth?
  - Corresponds to depth of intervals for “reducible” graphs
  - In real programs: average of 2.75

Summary: A Check List for Data Flow Problems

- Semi-lattice
  - Set of values
  - Meet operator
  - Top, bottom
  - Finite descending chain?
- Transfer functions
  - Function of each basic block
  - Monotone
  - Distributive?
- Algorithm
  - Initialization step (entry/exit, other nodes)
  - Visit order: \(r\text{PostOrder}\)
  - Depth of the graph

Friday’s Class

- Global common subexpression elimination
- Constant propagation/folding