Lecture 3

Local Optimizations, Intro to SSA

I. Basic blocks & Flow graphs

II. Abstraction 1: DAG

III. Abstraction 2: Value numbering

IV. Intro to SSA

ALSU 8.4-8.5, 6.2.4
I. Basic Blocks & Flow Graphs

Basic block = a sequence of 3-address statements
- only the first statement can be reached from outside the block (no branches into middle of block)
- all the statements are executed consecutively if the first one is (no branches out or halts except perhaps at end of block)
- We require basic blocks to be *maximal*, i.e., they cannot be made larger without violating the conditions

Flow graph
- **Nodes**: basic blocks
- **Edges**: $B_i \rightarrow B_j$, iff B_j can follow B_i immediately in *some* execution
 - Either first instruction of B_j is target of a goto at end of B_i
 - Or, B_j physically follows B_i, which does not end in an unconditional goto.
Partitioning into Basic Blocks

Identify the leader of each basic block
• First instruction
• Any target of a jump
• Any instruction immediately following a jump

Basic block starts at leader & ends at instruction immediately before a leader (or the last instruction)

ALSU 8.4
i := n-1
if i<1 goto L1
j := 1
if j>i goto L2
t1 := j-1
t2 := 4*t1
t3 := A[t2]
t6 := 4*j
t7 := A[t6]
if t3<=t7 goto L3
A[t2] := t7
A[t6] := t3
j := j+1
goto L4
i := i-1
goto L5
L1:
L2:
L3:
L4:
L5:
II. Local Optimizations (within basic block)

- **Common subexpression elimination**
 - array expressions
 - field access in records
 - access to parameters
Graph Abstractions

Example 1:
- grammar (for bottom-up parsing):
 \[E \rightarrow E + T \mid E - T \mid T, \quad T \rightarrow T*F \mid F, \quad F \rightarrow (E) \mid \text{id} \]
- expression:
 \[a + a * (b - c) + (b - c) * d \]
Graph Abstractions

Expression: \(a + a \times (b - c) + (b - c) \times d \)

Optimized code:

\[
\begin{align*}
t1 &= b - c \\
t2 &= a \times t1 \\
t3 &= a + t2 \\
t4 &= t1 \times d \\
t5 &= t3 + t4
\end{align*}
\]
How well do DAGs hold up across statements?

Example 2:

\[
\begin{align*}
a &= b+c; \\
b &= a-d; \\
c &= b+c; \\
d &= a-d;
\end{align*}
\]

Is this optimized code correct?

\[
\begin{align*}
a &= b+c; \\
d &= a-d; \\
c &= d+c;
\end{align*}
\]

Depends on whether \(b \) is live on exit from the block.
Critique of DAGs

• **Cause of problems**
 – Assignment statements
 – Value of variable depends on TIME

• **How to fix problem?**
 – build graph in order of execution
 – attach variable name to latest value

• **Final graph created is not very interesting**
 – Key: variable->value mapping across time
 – loses appeal of abstraction
III. Value Number: Another Abstraction

- More explicit with respect to VALUES, and TIME

- each value has its own “number”
 - common subexpression means same value number
- var2value: current map of variable to value
 - used to determine the value number of current expression

\[r_1 + r_2 \Rightarrow \text{var2value}(r_1) + \text{var2value}(r_2) \]
Value Numbering: Expression Example

Expression: \(a + a \times (b - c) + (b - c) \times d \)

Optimized code:
\[
\begin{align*}
t4 &= b - c \\
t5 &= a \times t4 \\
t6 &= a + t5 \\
t8 &= t4 \times d \\
t9 &= t6 + t8
\end{align*}
\]
Value Numbering Algorithm

Data structure:
VALUES = Table of
expression /* [OP, valnum1, valnum2] */
var /* name of variable currently holding expr */

For each instruction (dst = src1 OP src2) in execution order
valnum1=var2value(src1); valnum2=var2value(src2)

IF [OP, valnum1, valnum2] is in VALUES
 v = the index of expression
 Replace instruction with: dst = VALUES[v].var

ELSE
 Add
 expression = [OP, valnum1, valnum2]
 var = tv
 to VALUES
 v = index of new entry; tv is new temporary for v
 Replace instruction with: tv = VALUES[valnum1].var OP VALUES[valnum2].var
 dst = tv

set_var2value (dst, v)
More Details

• **What are the initial values of the variables?**
 – values at beginning of the basic block

• **Possible implementations:**
 – Initialization: create “initial values” for all variables
 – Or dynamically create them as they are used

• **Implementation of VALUES and var2value: hash tables**
Value Numbering: Basic Block Example

\[
\begin{align*}
 a &= b + c \\
 t4 &= b + c & \text{// } tv &= VALUES[\text{valnum1}].\text{var} \\
 \quad & & \text{OP } VALUES[\text{valnum2}].\text{var} \\
 a &= t4 & \text{// } \text{dst} = tv \\
 b &= a - d \\
 t5 &= t4 - d \\
 b &= t5 \\
 c &= b + c \\
 t6 &= t5 + c \\
 c &= t6 \\
 d &= a - d \\
 d &= t5 & \text{// } \text{dst} = VALUES[v].\text{var} \\
\end{align*}
\]

VALUES[5] = ([-4,3], t5)

Q: Assigning to a temporary and then copying to the destination increases the number of instructions—so why do it?

A: If \text{dst} is overwritten later, would lose opportunity to eliminate common subexpression since no variable would hold the result
Question

• How do you extend value numbering to constant folding?

\[
\begin{align*}
a &= 1 \\
b &= 2 \\
c &= a+b
\end{align*}
\]

Answer: Can add a field to the VALUES table indicating when an expression is a constant and what its value is
DAGs vs. Value Numbering

• Comparisons of two abstractions
 – DAGs
 – Value numbering

• Value numbering
 – VALUE: distinguish between variables and VALUES
 – TIME
 • Interpretation of instructions in order of execution
 • Keep dynamic state information
IV. Intro to SSA

Global Optimizations: look beyond the basic block

- **Global versions of local optimizations**
 - global common subexpression elimination
 - global constant propagation
 - dead code elimination

- **Loop optimizations**
 - reduce code to be executed in each iteration
 - code motion
 - induction variable elimination

- **Other control structures**
 - Code hoisting: eliminates copies of identical code on parallel paths in a flow graph to reduce code size.

We will cover these optimizations in later lectures.
Recurring Optimization Theme: Where Is a Variable Defined or Used?

- **Example: Loop-Invariant Code Motion**
 - Are B, C, and D only defined outside the loop?
 - Other definitions of A inside the loop?
 - Uses of A inside the loop?

- **Example: Copy Propagation**
 - For a given use of X:
 - Are all reaching definitions of X:
 - copies from same variable: e.g., $X = Y$
 - Where Y is not redefined since that copy?
 - If so, substitute use of X with use of Y

- It would be nice if we could *traverse directly* between related uses and def’s
 - this would enable a form of *sparse* code analysis (skip over “don’t care” cases)
Appearances of Same Variable Name May Be Unrelated

- The values in reused storage locations may be provably independent
 - in which case the compiler can optimize them as separate values
- Compiler could use renaming to make these different versions more explicit
Definition-Use and Use-Definition Chains

- **Definition-Use (DU) Chains:**
 - for a given definition of a variable X, what are all of its uses?
- **Use-Definition (UD) Chains:**
 - for a given use of a variable X, what are all of the reaching definitions of X?

\[
\begin{align*}
X_1 &= A + 1 \\
Y &= X_1 + B \\
F &= 2 \\
F &= 3 \\
X_2 &= F + 7 \\
C &= X_2 + D
\end{align*}
\]
Unfortunately DU and UD Chains Can Be Expensive

```c
foo(int i, int j) {
...
switch (i) {
    case 0: x=3; break;
    case 1: x=1, break;
    case 2: x=6; break;
    case 3: x=7; break;
    default: x = 11;
}
switch (j) {
    case 0: y=x+7; break;
    case 1: y=x+4; break;
    case 2: y=x-2; break;
    case 3: y=x+1; break;
    default: y=x+9;
}
...
```

In general,

\[N \text{ defs} \quad M \text{ uses} \quad \Rightarrow O(NM) \text{ space and time} \]

One solution: limit each variable to ONE definition site
Unfortunately DU and UD Chains Can Be Expensive

\[
\text{foo}(\text{int } i, \text{int } j) \{ \\
 \text{...} \\
 \text{switch (i) \{} \\
 \text{case 0: } x=3; \text{ break;} \\
 \text{case 1: } x=1; \text{ break;} \\
 \text{case 2: } x=6; \\
 \text{case 3: } x=7; \\
 \text{default: } x = 11; \\
 \text{\}} \\
\text{x1 is one of the above x's} \\
\text{switch (j) \{} \\
 \text{case 0: } y=x1+7; \\
 \text{case 1: } y=x1+4; \\
 \text{case 2: } y=x1-2; \\
 \text{case 3: } y=x1+1; \\
 \text{default: } y=x1+9; \\
 \text{\}} \\
\text{One solution: limit each variable to ONE definition site} \\
\text{...}
\]
Static Single Assignment (SSA)

• **Static single assignment** is an IR where every variable is assigned a value at most once in the program text.

• Easy for a basic block (reminiscent of Value Numbering):
 – Visit each instruction in program order:
 • LHS: assign to a *fresh version* of the variable
 • RHS: use the *most recent version* of each variable

\[
\begin{align*}
 a &= x + y \\
 b &= a + x \\
 a &= b + 2 \\
 c &= y + 1 \\
 a &= c + a
\end{align*}
\]

\[
\begin{align*}
 a_1 &= x + y \\
 b_1 &= a_1 + x \\
 a_2 &= b_1 + 2 \\
 c_1 &= y + 1 \\
 a_3 &= c_1 + a_2
\end{align*}
\]
What about Joins in the CFG?

c = 12
if (i) {
 a = x + y
 b = a + x
} else {
 a = b + 2
 c = y + 1
}
a = c + a

c1 = 12
if (i)

\[
a_1 = x + y \\
b_1 = a_1 + x \\
c_2 = y + 1 \\
a_2 = b + 2
\]

\[
a_4 = c_2 + a_2
\]

→ Use a notational convention (fiction): a \(\Phi \) function
Merging at Joins: the Φ function

$c_1 = 12$
if (i)

$a_1 = x + y$
$b_1 = a_1 + x$

$a_2 = b + 2$
$c_2 = y + 1$

$a_3 = \Phi(a_1, a_2)$
$c_3 = \Phi(c_1, c_2)$
$b_2 = \Phi(b_1, b)$
$a_4 = c_3 + a_3$

$a_4 = c_? + a_?$

15-745: Intro to SSA
The Φ function

- Φ merges multiple definitions along multiple control paths into a single definition.
- At a basic block with p predecessors, there are p arguments to the Φ function.

$$x_{\text{new}} = \Phi (x_1, x_2, x_3, \ldots, x_p)$$

- How do we choose which x_i to use?
 - We don’t really care!

- How do we emit code for this?
“Implementing” Φ

$c_1 = 12$
if (i)

$a_1 = x + y$
$b_1 = a_1 + x$
$a_3 = a_1$
$c_3 = c_1$

$a_2 = b + 2$
$c_2 = y + 1$
$a_3 = a_2$
$c_3 = c_2$

$a_3 = \Phi(a_1, a_2)$
$c_3 = \Phi(c_1, c_2)$
$a_4 = c_3 + a_3$

Never really done this way, but could be
Trivial SSA

- Each assignment generates a fresh variable
- At each join point insert Φ functions for all live variables

In general, too many Φ functions inserted
Minimal SSA

- Each assignment generates a fresh variable
- At each join point insert Φ functions for all live variables with multiple outstanding defs

\[
\begin{align*}
x &= 1 \\
y &= x \\
z &= y + x \\
y &= 2 \\
x_1 &= 1 \\
y_1 &= x_1 \\
y_2 &= 2 \\
\Phi(x_1, x_1) &= 1 \\
\Phi(y_1, y_2) &= 2 \\
z_1 &= y_3 + x_1
\end{align*}
\]
Today’s Class

I. Basic blocks & Flow graphs

II. Abstraction 1: DAG

III. Abstraction 2: Value numbering

IV. Intro to SSA

Wednesday’s Class

• LLVM Compiler: Further Details
 – Play around a bit with LLVM before class