Lecture 18
Memory Hierarchy Optimizations &
Locality Analysis

[ALSU 7.4.2-7.4.3, 11.2-11.5]

Caches: A Quick Review

• How do they work?
• Why do we care about them?
• What are typical configurations today?
• What are some important cache parameters that will affect performance?

Optimizing Cache Performance

• Things to enhance:
 • temporal locality
 • spatial locality

• Things to minimize:
 • conflicts (i.e. bad replacement decisions)

What can the compiler do to help?

Two Things We Can Manipulate

• Time:
 • When is an object accessed?

• Space:
 • Where does an object exist in the address space?

How do we exploit these two levers?
Time: Reordering Computation

- What makes it difficult to know *when* an object is accessed?
- How can we predict a *better time* to access it?
 - What information is needed?
- How do we know that this would be *safe*?

Space: Changing Data Layout

- What do we know about an object’s *location*?
 - scalars, structures, pointer-based data structures, arrays, code, etc.
- How can we tell what a *better layout* would be?
 - how many can we create?
- To what extent can we *safely* alter the layout?

Types of Objects to Consider

- Scalars
- Structures & Pointers
- Arrays

** Scalars**

```c
int x;
double y;
foo(int a) {
    int i;
    ...
    x = a*i;
    ...
}
```
Structures and Pointers

- What can we do here?
 - within a node
 - across nodes

- What limits the compiler’s ability to optimize here?

```c
struct {
    int count;
    double velocity;
    double inertia;
    struct node *neighbors[N];
} node;
```

Arrays / Matrices

- usually accessed within loops nests
 - makes it easy to understand “time”
- what we know about array element addresses:
 - start of array?
 - relative position within array

```c
double A[N][N], B[N][N];
...
for i = 0 to N-1
    for j = 0 to N-1
        A[i][j] = B[j][i];
```

Handy Representation: “Iteration Space”

- each position represents an iteration

```
for i = 0 to N-1
    for j = 0 to N-1
        A[i][j] = B[j][i];
```

Visitation Order in Iteration Space

- Note: iteration space ≠ data space

```
for i = 0 to N-1
    for j = 0 to N-1
        A[i][j] = B[j][i];
```
When Do Cache Misses Occur?

for i = 0 to N-1
for j = 0 to N-1
A[i][j] = B[j][i];

Optimizing the Cache Behavior of Array Accesses

• We need to answer the following questions:
 • when do cache misses occur?
 • use "locality analysis"
 • can we change the order of the iterations (or possibly data layout) to produce better behavior?
 • evaluate the cost of various alternatives
 • does the new ordering/layout still produce correct results?
 • use "dependence analysis"

Examples of Loop Transformations

• Loop Interchange
• Cache Blocking
• Skewing: iterate thru iteration space in the loops at an angle
• Loop Reversal: execute iterations in a loop in reverse order
 • ...

(we will briefly discuss the first two; see ALSU II.7.8 for others)
Loop Interchange

- (assuming 2 elements/cache line & \(N \) is large relative to cache size)

```
for \( i = 0 \) to \( N-1 \)
for \( j = 0 \) to \( N-1 \)
\[ A[j][i] = i*j; \]
```

Cache Blocking (aka "Tiling")

```
for \( i = 0 \) to \( N-1 \)
for \( j = 0 \) to \( N-1 \)
\[ f(A[i],A[j]); \]
```

- now we can exploit temporal locality

Impact on Visitation Order in Iteration Space

```
for \( i = 0 \) to \( N-1 \)
for \( j = 0 \) to \( N-1 \)
\[ f(A[i],A[j]); \]
```

- brings square sub-blocks of matrix "\(b \)" into the cache
- completely uses them up before moving on
- reduces the number of misses from \(\frac{L^3}{c} \) or \(\frac{N^3}{L} \) to only \(\frac{2N^2}{L} \)

\((C=\text{cache size}, L=\text{line size}) \)
Predicting Cache Behavior through "Locality Analysis"

- Definitions:
 - **Reuse:** accessing a location that has been accessed in the past
 - **Locality:** accessing a location that is now found in the cache

- Key Insights
 - Locality only occurs when there is reuse!
 - BUT, reuse does not necessarily result in locality.
 - why not?

Steps in Locality Analysis

1. Find data reuse
 - if caches were infinitely large, we would be finished
2. Determine "localized iteration space"
 - set of inner loops where the data accessed by an iteration is expected to fit within the cache
3. Find data locality:
 - reuse \(\land\) localized iteration space \(\Rightarrow\) locality

Types of Data Reuse/Locality

```
for i = 0 to 2
  for j = 0 to 100
    A[i][j] = B[j][0] + B[j+1][0];
```

<table>
<thead>
<tr>
<th>i</th>
<th>j</th>
<th>A[i][j]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Hit</td>
</tr>
<tr>
<td>0</td>
<td>100</td>
<td>Miss</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Hit</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>Miss</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>Hit</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>Miss</td>
</tr>
</tbody>
</table>

Temporal

Spatial

Group

Reuse Analysis: Representation

```
for i = 0 to 2
  for j = 0 to 100
    A[i][j] = B[j][0] + B[j+1][0];
```

- Map *n* loop indices into *d* array indices via array indexing function:
 \[
 j'(i) = Hi + c
 \]

\[
A[i][j] = A(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} i \\ 0 \end{bmatrix})
\]
\[
B[i][0] = B(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} i \\ 0 \end{bmatrix})
\]
\[
B[j+1][0] = B(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} j+1 \\ 0 \end{bmatrix})
\]
Finding Temporal Reuse

- Temporal reuse occurs between iterations \(\vec{i}_1 \) and \(\vec{i}_2 \) whenever:
 \[
 H\vec{i}_1 + \vec{c} = H\vec{i}_2 + \vec{c} \\
 H(\vec{i}_1 - \vec{i}_2) = \vec{0}
 \]

- Rather than worrying about individual values of \(\vec{i}_1 \) and \(\vec{i}_2 \), we say that reuse occurs along direction vector \(\vec{r} \) when:
 \[
 H(\vec{r}) = \vec{0}
 \]

- Solution: compute the nullspace of \(H \)

Temporal Reuse Example

for \(i = 0 \) to 2
for \(j = 0 \) to 100
\[
A[i][j] = B[j][0] + B[j+1][0];
\]

- Reuse between iterations \((i_1,j_1) \) and \((i_2,j_2) \) whenever:
 \[
 \begin{bmatrix}
 0 & 1 \\
 0 & 0 \\
 \end{bmatrix}
 \begin{bmatrix}
 i_1 \\
 j_1 \\
 \end{bmatrix}
 +
 \begin{bmatrix}
 0 & 1 \\
 0 & 0 \\
 \end{bmatrix}
 \begin{bmatrix}
 i_2 \\
 j_2 \\
 \end{bmatrix}
 +
 \begin{bmatrix}
 1 \\
 0 \\
 \end{bmatrix}
 =
 \begin{bmatrix}
 0 \\
 0 \\
 \end{bmatrix}
 \]

- True whenever \(j_1 = j_2 \), and regardless of the difference between \(i_1 \) and \(i_2 \).
 - i.e. whenever the difference lies along the nullspace of \(\begin{bmatrix}
 0 & 1 \\
 0 & 0 \\
 \end{bmatrix} \) (i.e. the outer loop).

More Complicated Example

for \(i = 0 \) to \(N-1 \)
for \(j = 0 \) to \(N-1 \)
\[
A[i+j][0] = i*j;
\]

- Nullspace of \(\begin{bmatrix}
 1 & 1 \\
 1 & 0 \\
 0 & 0 \\
 \end{bmatrix} = \text{span}\{[1,-1]\} \)
 i.e. when \(\Delta i = -\Delta j \).

Computing Spatial Reuse

- Assume two array elements share the same cache line iff they differ only in the last dimension
 - E.g., share the same row in a 2-dimensional array
- Why is this a reasonable approximation?
 - What are its limitations?

- Replace last row of \(H \) with zeros, creating \(H_s \)
- Find the nullspace of \(H_s \)
- Result: vector along which we access the same row
Computing Spatial Reuse: Example

for $i = 0$ to 2
for $j = 0$ to 100
\[A[i][j] = B[j][0] + B[j+1][0]; \]

\[A[i][j] = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} j \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \]

- $H_s = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
- Nullspace of $H_s = \text{span}\{(0,1)\}$, i.e., the inner loop
 - access same row of $A[i][j]$ along inner loop

Computing Spatial Reuse: More Complicated Example

for $i = 0$ to $N-1$
for $j = 0$ to $N-1$
\[A[i+j] = i \cdot j; \]

\[A[i+j] = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} j \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \]

- $H_s = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
- Nullspace of $H = \text{span}\{(1,-1)\}$
- Nullspace of $H_s = \text{span}\{(1,0),(0,1)\}$

Group Reuse (reuse from different static accesses)

for $i = 0$ to 2
for $j = 0$ to 100
\[A[i][j] = B[j][0] + B[j+1][0]; \]

- Limit analysis to consider only accesses with same H
 - i.e., index expressions differ only in their constant terms
- Determine when access same location (temporal) or same row (spatial)
- Only the "leading reference" suffers the bulk of the cache misses

Localized Iteration Space

- Given finite cache, when does reuse result in locality?

for $i = 0$ to 2
for $j = 0$ to 8
\[A[i][j] = B[j][0] + B[j+1][0]; \]

for $i = 0$ to 2
for $j = 0$ to 1000000
\[A[i][j] = B[j][0] + B[j+1][0]; \]

Localized: both i and j loops

Localized: j loop only

- Localized if accesses less data than effective cache size
Computing Locality

- Reuse Vector Space \cap Localized Vector Space \Rightarrow Locality Vector Space

- Example:

  ```
  for i = 0 to 2
   for j = 0 to 100
     A[i][j] = B[j][0] + B[j+1][0];
  ```

- If both loops are localized:
 - span{(1,0)} \cap span{(1,0),(0,1)} \Rightarrow span{(1,0)}
 - i.e. temporal reuse does result in temporal locality

- If only the innermost loop is localized:
 - span{(1,0)} \cap span{(0,1)} \Rightarrow span{}
 - i.e. no temporal locality