Lecture 13

Register Allocation: Coalescing

I. Motivation

II. Coalescing Overview

III. Algorithms:

• Simple & Safe Algorithm
• Briggs’ Algorithm
• George’s Algorithm
Review: Register Allocation without Spilling

• **Problems:**
 - Given n registers in a machine, is spilling avoided?
 - Find an assignment for all pseudo-registers, whenever possible.

• **Solution:**
 - **Abstraction:** an *interference graph*
 - nodes: live ranges
 - edges: presence of live range at time of definition
 - **Register Allocation and Assignment** problems
 - equivalent to *n-colorability* of interference graph
 - NP-complete
 - **Heuristics** to find an assignment for n colors
 - successful: colorable, and finds assignment
 - not successful: colorability unknown & no assignment
Review: Coloring Heuristic

- **Algorithm:**
 - Iterate until stuck or done
 - Pick any node with degree < n and add to stack
 - Remove the node and its edges from the graph
 - If done (no nodes left)
 - Use stack to reverse process and add colors

- Avoids making arbitrary decisions that make coloring fail (e.g., B, A, D different colors)
Review: Computing Live Ranges

Live Variables

Reaching Definitions

Variable \(v \) is live at point \(p \) if the value of \(v \) is used on some path starting at \(p \)

A = ... \((A_1) \)
IF A goto L1

{A} \{A\} \{A_1\}
{A} \{A\} \{A_1\}

B = ... \((B_1) \)
= A
D = ... \((D_1) \)
= B + D

L1: C = ... \((C_1) \)
= A
D = ... \((D_2) \)
= D + C

{A} \{A\} \{A_1\}
{A} \{A,C\} \{A_1,C_1\}
{B} \{B\} \{B_1\}
{B} \{B\} \{B_1\}
{C} \{C\} \{C\}
{C} \{C\} \{C_1\}
{D} \{D\} \{D\}
{D} \{D\} \{D_1\}

Variable v is live at point p if the value of v is used on some path starting at p

A = 2 \((A_2) \)

{A,D} \{A,D\} \{A_2,B_1,C_1,D_1,D_2\}
{D} \{D\} \{A_2,B_1,C_1,D_1,D_2\}

= A

ret D

Must merge

Overlapping live ranges for the same variable must be merged
Review: Register Allocation with Spilling

• **A pseudo-register is**
 – Colored successfully: allocated a hardware register
 – Not colored: left in memory

• **Objective function**
 – **Cost** of an uncolored node:
 • proportional to number of uses/definitions (dynamically)
 • one estimate = $(\# \text{ defs} \& \text{ uses}) \times 10^{\text{loop-nest-depth}}$
 • Objective: minimize sum of cost of uncolored nodes

• **Heuristics**
 – **Benefit** of spilling a pseudo-register:
 • increases colorability of pseudo-registers it interferes with
 • can approximate by its degree in interference graph
 – **Greedy heuristic**
 • spill the pseudo-register with lowest cost-to-benefit ratio, whenever spilling is necessary
Review: Live-Range Splitting

- **Observation**: spilling is absolutely necessary if
 - number of live ranges active at a program point > n

- **Apply live-range splitting before coloring**
 - Identify a point where number of live ranges > n
 - Among those live ranges, choose the one with the largest inactive region
 - Split the inactive region from the live range
 - Repeat as needed

Split & spill x, then can color rest

Spill cost? 2

\[x = \]
\[i = i + 1 \]
\[j = j + 1 \]
\[k = k + 1 \]
\[= x \]
I. Register Coalescing Motivation: Copy Instructions

- Two optimizations that help optimize away copy instructions:
 - Copy Propagation
 - Dead Code Elimination

- Can all copy instructions be eliminated using this pair of optimizations?

\[
\begin{align*}
X &= A + B \\
& \quad \ldots \\
Y &= X \\
& \quad \ldots \\
Z &= Y + 4
\end{align*}
\]

\[
\begin{align*}
X &= A + B \\
& \quad \ldots \\
// deleted \\
& \quad \ldots \\
Z &= X + 4
\end{align*}
\]
Example Where Copy Propagation Fails

- Use of copy target has multiple (conflicting) reaching definitions

\[
\begin{align*}
X &= A + B \\
Y &= C \\
Z &= Y + 4 \\
Y &= X
\end{align*}
\]
Another Example Where the Copy Instruction Remains

- Copy target (Y) still live even after some successful copy propagations

- **Bottom line**: copy instructions may still exist at the time register allocation is performed
II. Coalescing: Overview

• What clever thing might the register allocator do for copy instructions?

...
Y = X
...

...
r7 = r7
...

• If we can assign both the source and target of the copy to the same register:
 – then we don’t need to perform the copy instruction at all!
 – the copy instruction can be removed from the code
 • even though the optimizer was unable to do this earlier
• One way to do this:
 – treat the copy source and target as the same node in the interference graph
 • then the coloring algorithm will naturally assign them to the same register
 – this is called “coalescing”
Simple Example: Without Coalescing

- **Without coalescing**, X and Y can end up in different registers
 - cannot eliminate the copy instruction

\[
\begin{align*}
X &= \ldots \\
A &= 5 \\
Y &= X \\
B &= A + 2 \\
Z &= Y + B \\
\text{return } Z
\end{align*}
\]

Valid coloring with 3 registers
Example Revisited: With Coalescing

• **With coalescing**, \(X\) and \(Y\) are now guaranteed to end up in the same register
 – the copy instruction can now be eliminated

• **Great! So should we go ahead and do this for every copy instruction?**
Should We Coalesce X and Y In This Case?

It is legal to coalesce X and Y for a "$Y = X$" copy instruction if:

- the live ranges of X and Y do not overlap

But just because it is legal doesn’t mean that it is a good idea…

No! That would result in incorrect behavior if this branch is taken.

$X = A + B$

$Y = X$

$Z = Y + X$

$X = 2$
Why Coalescing May Be Undesirable, Even If Legal

\[
\begin{align*}
X &= A + B \\
\ldots &// 100 \text{ instructions} \\
Y &= X &// \text{last use of } X \\
\ldots &// 100 \text{ instructions} \\
Z &= Y + 4
\end{align*}
\]

• What is the likely impact of coalescing \(X\) and \(Y\) on:
 – live range size(s)?
 • recall our discussion of live range splitting
 – colorability of the interference graph?
• Fundamentally, coalescing adds further constraints to the coloring problem
 – doesn’t make coloring easier; may make it more difficult
• If we coalesce in this case, we may:
 – save a copy instruction, BUT
 – cause significant spilling overhead if we can no longer color the graph
Legal to Coalesce X and Y?

- It is legal to coalesce X and Y for a "$Y = X$" copy instruction if:
 - the live ranges of X and Y do not overlap

\[
\begin{align*}
X &= A + B \\
X &= 2 \\
Y &= X \\
Z &= Y + 2 \\
\end{align*}
\]

Not by our (conservative) rule: live ranges overlap

But actually would be ok in this case to use same register for X and Y
When to Coalesce

• Goal when coalescing is legal:
 – coalesce *unless* it would make a colorable graph non-colorable
• The bad news:
 – predicting colorability is tricky!
 • it depends on the shape of the graph
 • graph coloring is NP-hard
• Example: assuming 2 registers, should we coalesce X and Y?

2-colorable

Not 2-colorable
Representing Coalescing Candidates in the Interference Graph

- To decide whether to coalesce, we augment the interference graph.
- Coalescing candidates are represented by a new type of interference graph edge:
 - dotted lines: coalescing candidates
 - *try* to assign vertices the same color
 - (unless that is problematic, in which case they can be given different colors)
 - solid lines: interference (i.e., live ranges overlap)
 - vertices *must* be assigned different colors

```
X = ...
A = 5
Y = X
B = A + 2
Z = Y + B
return Z
```
How Do We Know When Coalescing Will Not Cause Spilling?

- **Key insight:**
 - Recall from the coloring algorithm:
 - we can always successfully N-color a node if its degree is $< N$

- To ensure that coalescing does not cause spilling:
 - check that the degree $< N$ invariant is still locally preserved after coalescing
 - if so, then coalescing won’t cause the graph to become non-colorable

- **Note:**
 - We do NOT need to determine whether the full graph is colorable or not
 - Just need to check that coalescing does not cause a colorable graph to become non-colorable
III. Algorithms

- Simple and Safe Algorithm
- Briggs’ Algorithm
- George’s Algorithm
Simple and Safe Coalescing Algorithm

- We can safely coalesce nodes \(X \) and \(Y \) with a coalescing edge if \((|X| + |Y|) < N\)
 - Note: \(|X| = \) degree of node \(X \) counting only interference (not coalescing) edges

- Example:
 \[
 (|X| + |Y|) = (1 + 2) = 3
 \]
 Degree of coalesced node can be no larger than 3

- if \(N \geq 4 \), it would always be safe to coalesce these two nodes
 - this cannot cause new spilling that would not have occurred with the original graph
- if \(N < 4 \), it is unclear

How can we (safely) be more aggressive than this?
What About This Example?

- Assume $N = 3$
- Is it safe to coalesce X and Y?

![Diagram showing nodes A, B, X, Y, and Z with edges connecting them.]

$(|X| + |Y|) = (1 + 2) = 3$

\[(Not \ less \ than \ N)\]

- **Note**: X and Y share a common (interference) neighbor: node A
 - hence the degree of the coalesced X/Y node is actually 2 (not 3)
 - therefore coalescing X and Y is guaranteed to be safe when $N = 3$
- How can we adjust the algorithm to capture this?
Another Helpful Insight

- Colors are not assigned until nodes are popped off the stack
 - nodes with degree \(< N\) are pushed on the stack first
 - when a node is popped off the stack, we know that it can be colored
 - because the number of potentially conflicting neighbors must be \(< N\)
- Spilling only occurs if there is no node with degree \(< N\) to push on the stack

- Example: \((N=2)\)

\[
\begin{array}{cccccc}
X & A & B & C & D & E \\
Y & J & I & H & G & F \\
\end{array}
\]

\(|X| = 5 \\
|Y| = 5 \\
2\text{-colorable after coalescing } X \text{ and } Y? \\
Yes: X/Y \text{ gets 1 color, A-J get 1 color}

Carnegie Mellon
Building on This Insight

- When would coalescing cause the stack pushing (aka “simplification”) to get stuck?
 1. coalesced node must have a degree $\geq N$
 - otherwise, it can be pushed on the stack, and we are not stuck
 2. AND it must have at least N neighbors that each have a degree $\geq N$
 - otherwise, all neighbors with degree $< N$ can be pushed before this node
 - reducing this node’s degree below N (and therefore we aren’t stuck)

- To coalesce more aggressively (and safely), let’s exploit this second requirement
 - which involves looking at the degree of a coalescing candidate’s neighbors
 - not just the degree of the coalescing candidates themselves
Briggs’ Algorithm

• Nodes \(X \) and \(Y \) (with a coalescing edge) can be coalesced if:
 – (number of neighbors of \(X/Y \) with degree \(\geq N \)) \(< N \)

• Works because:
 – all other neighbors can be pushed on the stack before this node,
 – and then its degree is \(< N \), so then it can be pushed

• Example: \((N = 2) \)
Briggs’ Algorithm

• **Nodes X and Y can be coalesced if:**
 – \((\text{number of neighbors of } X/Y \text{ with degree } \geq N) < N\)

• **More extreme example: \((N = 2)\)**

![Graph showing nodes X and Y with connected neighbors]

<table>
<thead>
<tr>
<th>X/Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>H</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>A</td>
</tr>
</tbody>
</table>
George’s Algorithm

Motivation:
• imagine that X has a very high degree, but Y has a much smaller degree
 – (perhaps because X has a large live range)

• With Briggs’ algorithm, we would inspect all neighbors of both X and Y
 – but X has a lot of neighbors!

• Can we get away with just inspecting the neighbors of Y?
 – while showing that coalescing makes coloring no worse than it was given X?
George’s Algorithm

• Coalescing X and Y does no harm if:
 – foreach neighbor T of Y, either:
 1. degree of T is $< N$, or \leftarrow similar to Briggs: T will be pushed before X/Y
 2. T interferes with X \leftarrow hence no change compared with coloring X

• Example: ($N=2$)
Summary

• *Coalescing* can enable register allocation to *eliminate copy instructions*
 – if both source and target of copy can be allocated to the same register
• However, coalescing must be applied with care to *avoid causing register spilling*
• Augment the interference graph:
 – dotted lines for coalescing candidate edges
 – try to allocate to same register, unless this may cause spilling
• **Three Coalescing Algorithms:**
 – Simplest: based solely on *degree of coalescing candidate nodes* (X and Y)
 – Briggs’ algorithm
 • look at degree of neighboring nodes of X and Y
 – George’s algorithm
 • asymmetrical: *look at neighbors of lower degree node Y*
 (examine degree and interference with X)
Today’s Class

I. Motivation

II. Coalescing Overview

III. Algorithms:
 - Simple & Safe Algorithm
 - Briggs’ Algorithm
 - George’s Algorithm

Friday’s Class

• Discussion of Assignment 1 and 2 homework problems

No Class on Monday