Lecture 13
Region-Based Analysis

I. Basic Idea
II. Algorithm
III. Optimization and Complexity
IV. Comparing region-based analysis with iterative algorithms

Motivation for Studying Region-Based Analysis
• Exploit the structure of block-structured programs in data flow
• Tie in several concepts studied:
 – Use of structure in induction variables, loop invariant
 • motivated by nature of the problem
 • This lecture: can we use structure for speed?
 – Iterative algorithm for data flow
 • This lecture: an alternative algorithm
 – Reducibility
 • all retreating edges of DFST are back edges
 • reducible graphs converge quickly
 • This lecture: algorithm exploits & requires reducibility
• Usefulness in practice
 – Faster for “harder” analyses
 – Useful for analyses related to structure
• Theoretically interesting: better understanding of data flow

Review: Dominance

A region in a flow graph is a set of nodes with a header that dominates all other nodes in a region

A region in a flow graph is a set of nodes with a header that dominates all other nodes in a region
Basic Idea

• In Iterative Analysis:
 • DEFINITION: Transfer function F_B: summarize effect from beginning to end of basic block B

• In Region-Based Analysis:
 • DEFINITION: Transfer function $F_{R,B}$: summarize effect from beginning of R to end of basic block B
 • Recursively construct a larger region R from smaller regions construct $F_{R,B}$ from transfer functions for smaller regions until the program is one region
 • Let P be the region for the entire program, and v be initial value at entry node
 – out[B] = $F_{R,B}(v)$
 – in[B] = $A_{B'}$ out[B'], where B' is a predecessor of B

II. Algorithm

1. Operations on transfer functions
2. How to build nested regions?
3. How to construct transfer functions that correspond to the larger regions?

1. Operations on Transfer Functions

Example: Reaching Definitions

• Transfer function over a block:
 $$ F(x) = Gen \cup (x - Kill) $$

• Resulting transfer functions (after operations) must be consistent with this form:
 – same equation
 – updated values for Gen and $Kill$ set parameters

Operations on Transfer Functions: Composition

$$ F_2(F_1(x)) = Gen_2 \cup (F_1(x) - Kill_2) $$

$$ = Gen_2 \cup (Gen_1 \cup (x - Kill_1)) - Kill_2 $$

$$ = Gen_2 \cup (Gen_1 \cup Kill_2 \cup (x - (Kill_1 \cup Kill_2))) $$

Input parameters

F_1 F_2 F_3 $F_2(F_1(x))$ F_1 Gen_1 $Kill_1$ Gen_2 $Kill_2$ Gen_3 $Kill_3$ $F_3(F_2(F_1(x)))$

Gen set after composition Kill set after composition
Operations on Transfer Functions: **Meet**

\[
F_1(x) \land F_2(x) = \text{Gen}_1 \cup \{x - \text{Kill}_1\} \cup \text{Gen}_2 \cup \{x - \text{Kill}_2\}
\]

(Recall that for Reaching Definitions, \(\land = \cup \).)

Example:

\[
F_1(x) \land F_2(x) = \text{Gen}_1 \cup \{x - \text{Kill}_1\} \cup \text{Gen}_2 \cup \{x - \text{Kill}_2\} = (\text{Gen}_1 \cup \text{Gen}_2) \cup \{x - (\text{Kill}_1 \cap \text{Kill}_2)\}
\]

Gen set after \(\land \) \hspace{1cm} Kill set after \(\land \)

Operations on Transfer Functions: **Closure**

For Reaching Definitions:

- Including the possible effects of the back edge, it may iterate 0, 1, 2, ..., \(\infty \) times.

\[
F^*(x) = \bigcup_{n=0}^{\infty} F(x) = x \land F(0) \land F(F(0)) \land \ldots
\]

What is the value at the input of the block?

Example:

\[
F^*(x) = x \land (\text{Gen} \cup \{x - \text{Kill}\}) \cup (\text{Gen} \cup \{\text{Gen} \cup \{x - \text{Kill}\} - \text{Kill}\}) \cup \ldots
\]

Gen set after closure \hspace{1cm} Kill set (after closure)

Recap of Operations on Transfer Functions

For Reaching Definitions:

- **Transfer Function** \(F(x) \):
 \[
 F(x) = \text{Gen} \cup \{x - \text{Kill}\}
 \]

- **Composition** \(F_2(F_1(x)) \):
 \[
 \text{Gen} = \text{Gen}_2 \cup \{\text{Gen}_1 - \text{Kill}_2\}
 \text{Kill} = \text{Kill}_1 \land \text{Kill}_2
 \]

- **Meet** \(F_1(x) \land F_2(x) \):
 \[
 \text{Gen} = \text{Gen}_1 \lor \text{Gen}_2
 \text{Kill} = \text{Kill}_1 \cap \text{Kill}_2
 \]

- **Closure** \(F^*(x) \):
 \[
 \text{Gen} = \text{Gen}
 \text{Kill} = \emptyset
 \]

2. Structure of Nested Regions (An Example)

- A region in a flow graph is a set of nodes that includes a header, which dominates all other nodes in a region.

- **T1-T2 rule** (Hecht & Ullman) for Reducible Flow Graphs
 - **T1:** Remove a loop

 If \(n \) is a node with a loop, i.e. an edge \(n \rightarrow n \), delete that edge.
 - **T2:** Remove a vertex

 If there is a node \(n \) that has a unique predecessor, \(m \), then \(m \) may consume \(n \) by deleting \(m \) and making all successors of \(n \) be successors of \(m \).
• In reduced graph:
 – each vertex represents a subgraph of original graph (a region).
 – each edge represents an edge in original graph
• Limit flow graph: result of exhaustive application of T1 and T2
 – independent of order of application
 – reducible flow graph: limit flow graph has a single vertex

Transfer Functions for T1 Rule

R: new region (subsumes back edges from \(R_j \rightarrow R_i \))

Observations:
 – the header of \(R_j \) (i.e. \(H \)) is also the header of \(R \)
 – we already know how to get from \(H \) to \(B \) for every block \(B \) in \(R_j \): i.e. \(F_{R_j,B} \)
 - this will be the last step in getting from the new \(R \) to \(B \) (composition)
 – what’s new: we need to get from \(R \) to the input of \(H \), including back edges!
 - this involves both meet (\(\land \)) and closure (\(* \)) operations

Transfer Functions for T2 Rule

• Transfer function \(F_{R,B} \):
 - \(F_{R,B} \) summarizes the effect from beginning of \(R \) to end of \(B \)
 - \(F_{R,H2} \) summarizes the effect from beginning of \(R \) to beginning of \(H2 \)
 - Unchanged for blocks \(B \) in region \(R \): \(F_{R,B} = F_{R_1,B} \)
 - \(F_{R,H2} = F_{R_1,H2} \) where \(p \) is a predecessor of \(H_2 \)
 - For blocks \(B \) in region \(R \): \(F_{R,B} = F_{R_2,B} \cdot F_{R,H2} \)
Let $R, T_1, T_2, B_1, B_2, R', B_3, B_4, B_5$ be regions.

Example

- **Rule R'**: $R, in(R')$.
- **Data structure keeps “header” relationship**.
- **Practical algorithm**: $O(m \log n)$.
- **Complexity**: $O(m \mu(m, n))$, μ is inverse Ackermann function.

Optimization

- Let $m = \text{number of edges}$, $n = \text{number of nodes}$.
- **Ideas for optimization**:
 - If we compute $F_{R,B}$ for every region B is in, then it is very expensive.
 - We are ultimately only interested in the entire region E; we need to compute only $F_{E,R}$ for every B.
 - There are many common subexpressions between F_{E,B_1} and F_{E,B_2}.
 - Number of $F_{E,B}$ calculated is m.
 - Also, we need to compute $F_{R',B}$, where R' represents the region whose header is subsumed.
 - Number of $F_{R,B}$ calculated, where R is not final is n.
 - Total number of $F_{R,B}$ calculated: $(m + n)$.
 - Data structure keeps “header” relationship.
 - Practical algorithm: $O(m \log n)$.
 - Complexity: $O(m \mu(m, n))$, μ is inverse Ackermann function.

III. Complexity of Algorithm

- Worst case: exponential.
- Most graphs (including GOTO programs) are reducible.

Reducibility

- If no T_1, T_2 is applicable before graph is reduced to single node, then split node (make k copies of node, one per predecessor) and continue.
- T1: Remove a n->n loop.
- T2: Remove a vertex w/unique predecessor.
IV. Comparison with Iterative Data Flow

- **Applicability**
 - Definitions of F^* can make technique more powerful than iterative algorithms
 - **Backward flow**: reverse graph is not typically reducible.
 - Requires more effort to adapt to backward flow than iterative algorithm
 - More important for interprocedural optimization

- **Speed**
 - **Irreducible graphs**
 - Iterative algorithm can process irreducible parts uniformly
 - Serious "irreducibility" can be slow with region-based analysis
 - Reducible graph & Cycles do not add information (common)
 - Iterative: \((\text{depth} + 2)\) passes
 - depth is 2.75 average, independent of code length
 - Region-based analysis: Theoretically almost linear, typically \(O(m \log n)\)
 - **Reducible & Cycles add information**
 - Iterative takes longer to converge
 - Region-based analysis remains the same

Wednesday's Class

- Register Allocation [ALSU 8.8]
- Assignment #2 due Wednesday midnight