Partial Redundancy Elimination

- Global code motion optimization
 - Remove partially redundant expressions
 - Loop invariant code motion
 - Can be extended to do Strength Reduction
- No loop analysis needed
- Bidirectional flow problem

[ALSU 9.5-9.5.2]

Partial Redundancy

- Partially Redundant Computation
 - Occurrence of expression E at P is partially redundant if E is partially available there:
 - E is evaluated along at least one path to P, with no operands redefined since.
 - Partially redundant expression can be eliminated if we can insert computations to make it fully redundant.

Loop Invariants are Partial Redundancies

- Loop invariant expression is partially redundant
 - As before, partially redundant computation can be eliminated if we insert computations to make it fully redundant.
 - Remaining copies can be eliminated through copy propagation or more complex analysis of partially redundant assignments.

Redundancy

- A Common Subexpression is a Redundant Computation
 - Occurrence of expression E at P is redundant if E is available there:
 - E is evaluated along every path to P, with no operands redefined since.
 - Redundant expression can be eliminated
Partial Redundancy Elimination

- **The Method:**
 1. Insert Computations to make partially redundant expression(s) fully redundant.
 2. Eliminate redundant expression(s).
- **Issues [Outline of Lecture]:**
 1. What expression occurrences are candidates for elimination?
 2. Where can we safely insert computations?
 3. Where do we want to insert them?
- For this lecture, we assume one expression of interest, a+b.
 - In practice, with some restrictions, can do many expressions in parallel.

Which Occurrences Might Be Eliminated?

- In CSE,
 - E is **available** at P if it is previously evaluated along every path to P, with no subsequent redefinitions of operands.
 - If so, we can eliminate computation at P.
- In PRE,
 - E is **partially available** at P if it is previously evaluated along at least one path to P, with no subsequent redefinitions of operands.
 - If so, we might be able to eliminate computation at P, if we can insert computations to make it fully redundant.
- Occurrences of E where E is partially available are candidates for elimination.

Finding Partially Available Expressions

- **Forward Flow problem**
 - Lattice = \(\{0, 1\}^n \), meet is union \(\cup \) (elementwise \(\max \))
 - \(\text{Top} = 0^n \) (= not PAVAIL), \(\text{entry} = 0^n \), \(\text{init} = 0^n \)
 - \(\text{PAVOUT}[b] = (\text{PAVIN}[b] - \text{KILL}[b]) \cup \text{AVLOC}[b] \)
 - \(\text{PAVIN}[b] = \begin{cases} 0^n & b = \text{entry} \\ \bigcup_{p \in \text{preds}(b)} \text{PAVOUT}[p] & \text{otherwise} \end{cases} \)
 - For a block,
 - Expression is **locally available** (AVLOC) if computed & downwards exposed.
 - Expression is killed (KILL) if any assignments to operands.

Partial Availability Example

- For expression a+b
 - \(\text{PAVOUT}[\text{entry}] = 0 \)
 - \(\begin{array}{l}
 \text{a} = \ldots \\
 \text{t1} = \text{a} + \text{b} \\
 \text{KILL} = 1 \\
 \text{AVLOC} = 0 \\
 \text{PAVOUT} = \\
 \end{array} \\
 - \(\begin{array}{l}
 \text{a} = \ldots \\
 \text{t2} = \text{a} + \text{b} \\
 \text{KILL} = 1 \\
 \text{AVLOC} = 1 \\
 \text{PAVOUT} = \\
 \end{array} \\
 - \(\text{PAVOUT}[b] = (\text{PAVIN}[b] - \text{KILL}[b]) \cup \text{AVLOC}[b] \)

Occurrence in loop is partially redundant
Where Can We Insert Computations?

- **Safety**: never introduce a new expression along any path.
 - Insertion could introduce exception, change program behavior.
 - If we can add a new basic block, can insert safely in most cases.
 - Solution: insert expression only where it is anticipated.

- **Performance**: never increase the # of computations on any path.
 - Under simple model, guarantees program won’t get worse.
 - Reality: might increase register lifetimes, add copies, lose.

Finding Anticipated Expressions

- **Backward flow problem**
 - Lattice = \{0, 1\}, meet is intersection (∧), top = 1 (ANT), exit = 0, init = 1
 - \(\text{ANTIN}[i] = \text{ANTLOC}[i] \cup (\text{ANTOUT}[i] - \text{KILL}[i])\)
 - \(\text{ANTOUT}[i] = \begin{cases} 0 & \text{if exit} \\ \text{ANTIN}[i] \cap \text{ANTOUT}[i] & \text{otherwise} \end{cases}\)

- **For a block**
 - Expression locally anticipated (ANTLOC) if defined & upwards exposed

 \[
 \begin{align*}
 a &= \ldots \\
 t_1 &= \ldots \\
 t_2 &= \ldots \\
 t_3 &= \ldots \\
 \end{align*}
 \]

Where Do We Want to Insert Computations?

- Morel-Renovise and variants: “Placement Possible”
 - Dataflow analysis shows where to insert:
 - PPIN = "Placement possible at entry of block or before."
 - PPOUT = "Placement possible at exit of block or before."
 - Insert at earliest place where PPIN = 1.
 - Only place at end of blocks,
 - PPIN really means "Placement possible or not necessary in each predecessor block."
 - Don’t need to insert where expression is already available.

 - \(\text{INSERT}[i] = \text{PPOUT}[i] \cap (\neg \text{PPIN}[i] \cup \text{KILL}[i] \cap \neg \text{AVOUT}[i])\)
 - Can put Can’t move it Not already it here back any further available
 - Remove (upwards-exposed) computations where PPIN=1.

 - \(\text{DELETE}[i] = \text{PPIN}[i] \land \text{ANTLOC}[i]\)
 - Moved Used locally earlier here
Where Do We Want to Insert? Example

\[t_1 = a + b \]
\[a = \ldots \]
\[t_2 = a + b \]

Formulating the Problem

- **PPOUT**: we want to place at output of this block only if
 - we want to place at entry of all successors (correctness & performance)
- **PPIN**: we want to place at input of this block only if (all of):
 - we have a local computation to place, or a placement at the end of this block which we can move up
 - we want to move computation to output of all predecessors where expression is not already available (don't insert at input)
 - we can gain something by placing it here (PAVIN)
- **Forward or Backward?**
 - BOTH!

Problem is bidirectional, but lattice \([0, 1]\) is finite, so
 - as long as transfer functions are monotone, it converges.

Computing “Placement Possible”

- **PPOUT**: we want to place at output of this block only if
 - we want to place at entry of all successors
 - \[PPOUT[i] = \bigcap_{s \in \text{succ}(i)} PPIN[i] \]
- **PPIN**: we want to place at start of this block only if (all of):
 - we have a local computation to place, or a placement at the end of this block which we can move up
 - we want to move computation to output of all predecessors where expression is not already available (don't insert at input)
 - we gain something by moving it up (PAVIN heuristic)
 - \[\text{ANTLOC}[i] \bigcup (\text{PPOUT}[p] - \text{KILL}[p]) \]
 - \[PPIN[i] = \bigcap_{p \in \text{preds}(i)} \left(PPOUT[p] \cup \text{AVOUT}[p] \right) \]

“Placement Possible” Example 1

\[t_1 = a + b \]
\[a = \ldots \]
\[t_2 = a + b \]

\[\text{KILL} = 1 \]
\[\text{AVLOC} = 0 \]
\[\text{ANTLOC} = 0 \]
\[\text{PAVIN} = 0 \]
\[\text{PAVOUT} = 0 \]
\[\text{AVOUT} = 0 \]
\[PPIN = \]
\[PPOUT = \]
\[\text{KILL} = 0 \]
\[\text{AVLOC} = 1 \]
\[\text{ANTLOC} = 1 \]
\[\text{PAVIN} = 1 \]
\[\text{PAVOUT} = 1 \]
\[\text{AVOUT} = 1 \]
\[PPIN[\text{entry}] = 0 \]
\[PPOUT[\text{entry}] = 0 \]
\[\text{KILL} = 1 \]
\[\text{AVLOC} = 1 \]
\[\text{ANTLOC} = 1 \]
\[\text{PAVIN} = 1 \]
\[\text{PAVOUT} = 1 \]
\[\text{AVOUT} = 1 \]
\[PPIN[\text{exit}] = 0 \]
“Placement Possible” Example 2

\[
\begin{align*}
\text{a} &= \ldots \\
\text{t1} &= \text{a} + \text{b} \\
\text{a} &= \ldots \\
\text{t2} &= \text{a} + \text{b}
\end{align*}
\]

KILL = 1
AVLOC = 1
ANTLOC = 0
KILL = 1
AVLOC = 0
ANTLOC = 1

\[
\begin{align*}
\text{PAVIN} &= 0 \\
\text{PPOUT}[\text{entry}] &= 0 \\
\text{PPIN} &= 0 \\
\text{PPOUT} &= 0
\end{align*}
\]

PPIN =
PPIN =
PPIN =

\[
\begin{align*}
\text{PPIN}[\text{exit}] &= 0 \\
\text{PPOUT}[\text{entry}] &= 0
\end{align*}
\]

“Placement Possible” Correctness

- Convergence of analysis: transfer functions are monotone
- Safety: Insert only if anticipated
 \[
 \text{PPIN}[i] \subseteq (\text{PPOUT}[i] - \text{KILL}[i]) \cup \text{ANTLOC}[i]
 \]
- Performance: never increase the # of computations on any path
 - \text{DELETE} = \text{PPIN} \cap \text{ANTLOC}
 - On every path from an INSERT, there is a DELETE
 - The number of computations on a path does not increase

Morel-Renvoise Limitations

- Movement usefulness tied to PAVIN heuristic
 - Makes some useless moves, might increase register lifetimes:

\[
\begin{align*}
\text{a+b} &\quad \text{Not anticipated, so incorrect to place here} \\
\text{a+b} &\quad \text{PAVIN & ANTLOC, so PPIN} \\
\text{a+b} &\quad \text{not PPIN for all succ, so not PPOUT} \\
\text{a+b} &\quad \text{PAVIN & ANTLOC, so PPIN} \\
\text{a+b} &\quad \text{not PAVIN so not PPIN}
\end{align*}
\]

- Bidirectional data flow difficult to compute

Friday’s Class

- Lazy Code Motion
 [ALSU 9.5.3-9.5.6]