
15-712:
Advanced Operating Systems & Distributed Systems

Distributed Snapshots: Determining
Global States of Distributed Systems

Prof. Phillip Gibbons

Spring 2023, Lecture 5

2

“Time, Clocks, and the Ordering of Events
in a Distributed System”

Leslie Lamport 1978

“Distributed Snapshots: Determining Global
States of Distributed Systems”

K. Mani Chandy & Leslie Lamport 1985

• Leslie Lamport (SRI, DEC SRC, MSR)
– National Academy of Science

• Mani Chandy (UT Austin, Caltech)
– National Academy of Engineering

3

“Time, Clocks, and the Ordering of Events
in a Distributed System”

Leslie Lamport 1978

SigOps HoF citation (2013):
This paper takes the idea of consistency for

distributed predicate evaluation, formalizes it,
distinguishes between stable and dynamic

predicates, and shows precise conditions for
correct detection of stable conditions. The

fundamental techniques in the paper are the
secret sauce in many distributed algorithms

for deadlock detection, termination detection,
consistent checkpointing for fault tolerance,
global predicate detection for debugging and

monitoring, and distributed simulation.

“Distributed Snapshots: Determining Global
States of Distributed Systems”

K. Mani Chandy & Leslie Lamport 1985

4

Leslie Lamport on Today’s Paper
“The distributed snapshot algorithm described in this paper came
about when I visited Chandy, who was then at the University of

Texas at Austin.

He posed the problem to me over dinner, but we had both had
too much wine to think about it right then.

The next morning, in the shower, I came up with the solution.

When I arrived at Chandy's office, he was waiting for me with the
same solution.

I consider the algorithm to be a straightforward application of the
basic ideas from [27].”

[27] is “Time, Clocks, and the Ordering of Events in a Distributed System”

5

Global State Detection

6

System Model: Processes & Channels
• Finite labeled, directed graph in which vertices represent

processes & edges represent channels

• Channels have infinite buffers, in-order delivery,
arbitrary but finite delays, are uni-directional & error-free

7

System Model: Events
An event is defined by:

– process p

– state s of p immediately before the event

– state s’ of p immediately after the event

– channel c (if any) whose state is altered by the event

– message M (if any) sent/received along c

An event may change state of at most one channel, by either
sending or receiving along that channel

An event is legal in a state s iff
all preconditions for that event are satisfied in s

Possible preconditions: state + head of incoming channel for a receive

8

Example

9

• state of p: in-p (p has token)

state transitions to in-c

• state of q: in-c
state of c: has token
state of c’: empty

Problem: global state shows

• 2 tokens in system

• state of c: in-p (empty)

• state of p: in-c
state of q: in-c
state of c’: empty

• 0 tokens in system

Recording an Inconsistent Global State

in-p in-c

10

Global-State-Detection Algorithm
• Marker-Sending Rule for p

For each channel c outgoing from p:
– p records state, then sends a marker as its next message on c

• Marker-Receiving Rule for q
On receiving a marker along a channel c:
– If q has not recorded its state then

q records its state; q records the state c as empty

– Else q records state of c as the sequence of messages received
along c after q’s state was recorded yet before q received the
marker along c

Termination: As long as at least 1 process spontaneously records it state
& no marker remains stuck in a channel & the graph is strongly connected,
then all processes record their states in finite time

11

1. In S0, p records state=A,
puts marker $ on c

2. p puts M on c (S1)
q puts M’ on c’ (S2)
p receives M’ (S3) records M’

3. Marker received by q;
q records state=D, c=empty,
q puts marker on c’

4. Marker received by p;
p records c’=<M’>

Example

Never
Happened!

State
diagram

for p

State
diagram

for q

*must be on c’

**must be on c
**

*

$

$

$

$

$

13

So…In What Way is the
Recorded Global State “Meaningful” ?

• It *could* have occurred

• Theorem 1: There is a computation where
– Sequence of states before the DS algorithm starts is unchanged

– Sequence of states after the DS algorithm ends is unchanged

– Sequence of events in between may (only) be reordered

– Recorded global state is one of the states in between

• But why is that useful???

14

Applying to Prior Example
Never Happened! But Could’a Happened

q sends M’

p sends M

15

Discussion: Summary Question #1

• State the 3 most important things the paper says. These could be
some combination of their motivations, observations, interesting
parts of the design, or clever parts of their implementation.

16

Stability Detection
• Input: Any stable property y

Stable: y(S) implies y(S’) for all global states S’ reachable from S

– E.g., the kth computation phase has terminated, k=1,2,…

– E.g., the computation is deadlocked/livelocked

• Output: TRUE or FALSE
– Returning TRUE implies property y holds when DS algorithm ends

– Returning FALSE implies property y did not hold when DS algorithm starts
i.e., property y holds when DS algorithm starts implies must return TRUE

Note: If y starts holding after DS start, ok to return FALSE

17

Stability Detection Algorithm
• Input: Any stable property y

Stable: y(S) implies y(S’) for all global states S’ reachable from S

• Must Guarantee:
– Returning TRUE implies property y holds when DS algorithm ends
– Property y holds when DS algorithm starts implies must return TRUE

• Stability Detection Algorithm: Record a global state S*; Return y(S*)

• Correctness:
– y(S*)=TRUE implies y(DS end state)=TRUE [because reachable, y stable]

– y(DS start state)=TRUE implies y(S*)=TRUE [because reachable, y stable]

18

Discussion: Summary Question #2

• Describe the paper's single most glaring deficiency. Every paper
has some fault. Perhaps an experiment was poorly designed or the
main idea had a narrow scope or applicability.

19

Key Theorem & Proof Sketch
• Theorem 1: There is a computation seq’ derived from seq where

– Sequence of states before/after DS starts/ends is unchanged
– Sequence of events in between may (only) be reordered
– Recorded global state S* is one of the states in between

• Prerecording event: occurs at p before p records its state
Postrecording event: …after…

• seq’ is seq permuted such that all prerecording events
occur before any postrecording events

• Must show:
– seq’ is a legal computation
– S* is the global state in seq’ at the transition point

20

1. In S0, p records state=A,
puts marker on c

2. p puts M on c (S1)
q puts M’ on c’ (S2)
p receives M’ (S3) records M’

3. Marker received by q;
q records state=D, c=empty,
q puts marker on c’

4. Marker received by p;
p records c’=<M’>

Example

S*

Postrecording at p

Prerecording at q

Postrecording at p

State
diagram

for p

State
diagram

for q

*must be on c’

**must be on c
**

*

21

Example: Swapping Post and Pre

q sends M’

p sends M

postrecording

prerecording

postrecording

prerecording

postrecording

postrecording

S*

22

Swapping Post and Pre
Why is it legal to swap 𝒆𝒆𝒋𝒋−𝟏𝟏 (post) and 𝒆𝒆𝒋𝒋 (pre) ?
First show 𝒆𝒆𝒋𝒋 can occur in 𝑆𝑆𝑗𝑗−1:
– Must be on different processes, say 𝒆𝒆𝒋𝒋−𝟏𝟏 at p and 𝒆𝒆𝒋𝒋 at q
– No message M sent at 𝒆𝒆𝒋𝒋−𝟏𝟏 received at 𝒆𝒆𝒋𝒋

Why? Since 𝒆𝒆𝒋𝒋−𝟏𝟏 is post, marker already sent
If M received at 𝒆𝒆𝒋𝒋 then q already received marker

& recorded state, so 𝑒𝑒𝑗𝑗 would be post
– State of q not altered by occurrence of 𝒆𝒆𝒋𝒋−𝟏𝟏 since at p
– If 𝒆𝒆𝒋𝒋 is a receive M along c, then

M already at head of c before 𝒆𝒆𝒋𝒋−𝟏𝟏
– Thus, 𝒆𝒆𝒋𝒋 can occur in 𝑆𝑆𝑗𝑗−1

𝑒𝑒𝑗𝑗: q sends M’

𝑺𝑺𝒋𝒋−𝟏𝟏

OK!

23

Swapping Post and Pre
Why is it legal to swap 𝒆𝒆𝒋𝒋−𝟏𝟏 (post) and 𝒆𝒆𝒋𝒋 (pre) ?

Next show 𝒆𝒆𝒋𝒋−𝟏𝟏 can occur immediately after 𝒆𝒆𝒋𝒋
– State of p not altered by occurrence of 𝒆𝒆𝒋𝒋 at q

– If 𝒆𝒆𝒋𝒋−𝟏𝟏 is a receive of M’ on c’, then M’ still at head of c’ after 𝒆𝒆𝒋𝒋
(even if 𝒆𝒆𝒋𝒋 were a send along c’, it can’t jump the FIFO order)

– Thus, 𝒆𝒆𝒋𝒋−𝟏𝟏 preconditions are satisfied, and hence it can occur
immediately after 𝒆𝒆𝒋𝒋

Moreover, state after 𝑒𝑒1, … , 𝑒𝑒𝑗𝑗−2, 𝑒𝑒𝑗𝑗 , 𝑒𝑒𝑗𝑗−1 is same as 𝑒𝑒1, … 𝑒𝑒𝑗𝑗−1, 𝑒𝑒𝑗𝑗

state immediately
after 𝒆𝒆𝒋𝒋

event 𝒆𝒆𝒋𝒋−𝟏𝟏OK!

24

Completing the Proof

Theorem 1: There is a computation seq’ derived from seq where
– Sequence of states before/after DS starts/ends is unchanged
– Sequence of events in between may (only) be reordered
– Recorded global state S* is one of the states in between

• Repeatedly pairwise swap until all pre before any post

• S* is the same as state at pre-to-post transition
– Follows from Marker-Send and Marker-Receive rules

QED

25

Discussion: Summary Question #3

• Describe what conclusion you draw from the paper as to how to
build systems in the future. Most of the assigned papers are
significant to the systems community and have had some lasting
impact on the area.

26

Wednesday

“Eraser: A Dynamic Data Race Detector for
Multi-Threaded Programs”

Stefan Savage, Michael Burrows, Greg Nelson,
Patrick Sobalvarro, Thomas Anderson 1997

“Efficient and Scalable Thread-Safety
Violation Detection”

Guangpu Li, Shan Lu, Madanlal Musuvathi,
Suman Nath, Rohan Padhye 2019

Optional Further Reading:

	15-712:�Advanced Operating Systems & Distributed Systems��Distributed Snapshots: Determining Global States of Distributed Systems�
	Slide Number 2
	Slide Number 3
	Leslie Lamport on Today’s Paper
	Global State Detection
	System Model: Processes & Channels
	System Model: Events
	Example
	Recording an Inconsistent Global State
	Global-State-Detection Algorithm
	Example
	So…In What Way is the �Recorded Global State “Meaningful” ?
	Applying to Prior Example
	Discussion: Summary Question #1
	Stability Detection
	Stability Detection Algorithm
	Discussion: Summary Question #2
	Key Theorem & Proof Sketch
	Example
	Example: Swapping Post and Pre
	Swapping Post and Pre
	Swapping Post and Pre
	Completing the Proof
	Discussion: Summary Question #3
	Wednesday

