15-712:
Advanced Operating Systems & Distributed Systems

Distributed Snapshots: Determining
Global States of Distributed Systems

Prof. Phillip Gibbons

Spring 2023, Lecture 5

“Distributed Snapshots: Determining Global
States of Distributed Systems”

K. Mani Chandy & Leslie Lamport 1985

e Leslie Lamport (SRI, DEC SRC, MSR)
— National Academy of Science

e Mani Chandy (UT Austin, Caltech)
— National Academy of Engineering

AN INTRODUCTION TO parallel Program Design

Parallel
Programming

Designing I'l" Systems

PROCESSING

“Distributed Snapshots: Determining Global
States of Distributed Systems”

K. Mani Chandy & Leslie Lamport 1985

SigOps HoF citation (2013):

This paper takes the idea of consistency for
distributed predicate evaluation, formalizes it,
distinguishes between stable and dynamic
predicates, and shows precise conditions for
correct detection of stable conditions. The
fundamental techniques in the paper are the
secret sauce in many distributed algorithms
for deadlock detection, termination detection,
consistent checkpointing for fault tolerance,
global predicate detection for debugging and
monitoring, and distributed simulation.

Leslie Lamport on Today’s Paper

“The distributed snapshot algorithm described in this paper came
about when | visited Chandy, who was then at the University of
Texas at Austin.

He posed the problem to me over dinner, but we had both had
too much wine to think about it right then.

The next morning, in the shower, | came up with the solution.

When | arrived at Chandy's office, he was waiting for me with the
same solution.

| consider the algorithm to be a straightforward application of the
basic ideas from [27].”

[27] is “Time, Clocks, and the Ordering of Events in a Distributed System”

Global State Detection
P, Gl

System Model: Processes & Channels

e Finite labeled, directed graph in which vertices represent
processes & edges represent channels

C1
/_;\) m process

G2

C4 C3 channel

e Channels have infinite buffers, in-order delivery,
arbitrary but finite delays, are uni-directional & error-free

System Model: Events

An event is defined by:
— process p

— state s of p immediately before the event

— state s’ of p immediately after the event

— channel c (if any) whose state is altered by the event
— message M (if any) sent/received along c

An event may change state of at most one channel, by either
sending or receiving along that channel

An event is legal in a state s iff
all preconditions for that event are satisfied in s

Possible preconditions: state + head of incoming channel for a receive

Example

¢
D q | process
c'

channel

in transit

global state: token in p global state: tokeni/nc(
—— e s e T
| o |
sl empty sOl lsO token sOl
0= (==}
| empty | : empty f

-] - i
gl_ob_al stﬂa:_t_ol_&srun*g’ gl_obal state: token in q
:_ 7 T]
|sO empty 30{ ISO empty sl :
| H— | m— |
I token] | empty }
o N L J

_ Fig. 4. Global states and transitions of the single-token conservation system. -

Recording an Inconsistent Global State

in transit

global state: token in p global state: toka.a’:a}c(

c |s| empty s sO, token =5C)||
0———0}i0 o—o'—w—o'
c’ empty empty If
_______ in-p &
e state of p: in-p (p has token) e state of c: in-p (empty)

state transitions to in-c

e state of q: in-c e state of p: in-c
state of c: has token state of q: in-c
state of ¢’: empty state of c’: empty

Problem: global state shows

» 2 tokens in system * 0 tokens in system

Global-State-Detection Algorithm

e Marker-Sending Rule for p
For each channel ¢ outgoing from p:

— p records state, then sends a marker as its next message on ¢

e Marker-Receiving Rule for ¢
On receiving a marker along a channel c:

— If g has not recorded its state then
g records its state; q records the state c as empty

— Else q records state of ¢ as the sequence of messages received
along c after q’s state was recorded yet before g received the
marker along c

Termination: As long as at least 1 process spontaneously records it state
& no marker remains stuck in a channel & the graph is strongly connected,
then all processes record their states in finite time

O——O Example @5
- @ send M M:‘@

receive M
*must be on ¢’

send M’
initial @ @

receive M **
**must beon c

1. In SO, p records state=A,

puts marker S on c

2. pputsMonc(S1)
g puts M’ on ¢’ (S2)

p receives M’ (S3) records M’

3. Marker received by q;

q records state=D, c=empty,

g puts marker on ¢’

4. Marker received by p;

diagram

initial global
empty state SO
@
empty state C
l p sends M
Mo

diagram

giobal state S$1

©

empty

l q sends M’

Mo S

@ global state 82
M’ D
1 p receives M’

global state S3

e

empty $ D

Never

p records ¢’=<M’> o O- Smpty ;O
state (4] q | state D
()| Happened!

So...In What Way is the
Recorded Global State “Meaningful” ?

e |t *could* have occurred

e Theorem 1: There is a computation where
— Sequence of states before the DS algorithm starts is unchanged

— Sequence of states after the DS algorithm ends is unchanged
— Sequence of events in between may (only) be reordered

— Recorded global state is one of the states in between

e But why is that useful???

Applying to Prior Example

Never Happened!

initial global
empty state SO
state AQ empty Ostate C

[OmER O]

empty

l q sends M’
M
O ©
B M’ D
1 p receives M’

empty

gitobal state S1

global state S2

global state S3

But Could’a Happened

initial global
empty state SO
state AQ empty Ostate C
1 g sends M’
ampty
state A Q @ state D
l p sends M

@ global state S2
D

1 p receives M’
z q) global state S3
D

O
©)

empty

Discussion: Summary Question #1

e State the 3 most important things the paper says. These could be
some combination of their motivations, observations, interesting
parts of the design, or clever parts of their implementation.

Stability Detection

e Input: Any stable property y
Stable: y(S) implies y(S’) for all global states S’ reachable from S

— E.g., the kth computation phase has terminated, k=1,2,...

— E.g., the computation is deadlocked/livelocked

e Output: TRUE or FALSE
— Returning TRUE implies property y holds when DS algorithm ends

— Returning FALSE implies property y did not hold when DS algorithm starts
i.e., property y holds when DS algorithm starts implies must return TRUE

Note: If y starts holding after DS start, ok to return FALSE

Stability Detection Algorithm

e Input: Any stable propertyy
Stable: y(S) implies y(S’) for all global states S’ reachable from S

e Must Guarantee:
— Returning TRUE implies property y holds when DS algorithm ends
— Property y holds when DS algorithm starts implies must return TRUE

e Stability Detection Algorithm: Record a global state S*; Return y(5*)

e Correctness:
— y(S*)=TRUE implies y(DS end state)=TRUE [because reachable, y stable]

— y(DS start state)=TRUE implies y(S*)=TRUE [because reachable, y stable]

Discussion: Summary Question #2

e Describe the paper's single most glaring deficiency. Every paper
has some fault. Perhaps an experiment was poorly designed or the
main idea had a narrow scope or applicability.

Key Theorem & Proof Sketch

e Theorem 1: There is a computation seq’ derived from seq where
— Sequence of states before/after DS starts/ends is unchanged
— Seqguence of events in between may (only) be reordered
— Recorded global state S* is one of the states in between

e Prerecording event: occurs at p before p records its state
Postrecording event: ...after...

e seq’ is seq permuted such that all prerecording events
occur before any postrecording events

e Must show:
— seq’ is a legal computation
— S*is the global state in seq’ at the transition point

OO i e
Ve empty state
— Example &) 0
P q

send M state A empty state C
- State
initial A B diagram

receive M’ * forp p sends M .

Postrecording at p

*must be on ¢’

initial @

**must beon c

sand M’

State
» diagram
for g

1. In SO, p records state=A,
puts marker on c

receive M **

2. pputsMonc(S1)
g puts M’ on ¢’ (S2)
p receives M’ (S3) records M’

3. Marker received by q;
g records state=D, c=empty,
g puts marker on ¢’

4. Marker received by p; G*

M

@ giobal state S$1
empty G

q sends M’
Prerecording at g

M

@ global state S2
M’ D

1 p receives M’
Postrecording at p
M

global state S3

©

empty D

p records ¢’=<M’> Sty
state A { p [a ' state D
Ml

Example: Swapping Post and Pre

initial global
empty state SO
O ©
state A empty state C

1 p sends M
postrecording

@ gitobal state S1
G

q sends M’
prerecording

M
@ @ global state 52
B M’ D

p receives M’

postrecording

M
z q) global state S3

empty D

M

C

empty

O

empty in;ttiglegggal
OO
state A empty state C
1 g sends M’
G * prerecording

Ml

ampty

@ state D

p sends M
postrecording
@ 2 O globa state 52
B M’ D

p receives M’
postrecording

global state S3

A empty D

Swapping Post and Pre

Why is it legal to swap e;_1 (post) and e; (pre) ?

First show e; can occurin S;_;

— Must be on different processes, say ej_q at pand ej at g

— No message M sent at e;_4 received at e;
Why? Since e;_1 is post, marker already sent
If M received at e; then q already received marker
& recorded state, so e; would be post

— State of g not altered by occurrence of e;_1 since at p

— If ej is a receive M along c, then Si 4 initial global

j— empty state SO
M already at head of c before e;_4 @ @
empty state C
— Thus, ej can occurin §;_4

1 e;:q sends M’ | OK!

send M’
ampty
state A q state D
receive M Hi'.'

Swapping Post and Pre

Why is it legal to swap e;_1 (post) and e; (pre) ?

Next show e;_; can occur immediately after e;

— State of p not altered by occurrence of e; at g

— If ej_1 is a receive of M’ on ¢’, then M’ still at head of ¢’ after e;
(even if e; were a send along c’, it can’t jump the FIFO order)

— Thus, e;_1 preconditions are satisfied, and hence it can occur

immediately after e;

ampty . .
state A @ —@ state D state immediately
M after e]

1" sends M1 ok event ej_

Moreover, state after e, ...,ej_,¢j,ej_; issamease;, ...ej_q, €;

Completing the Proof

Theorem 1: There is a computation seq’ derived from seq where
— Sequence of states before/after DS starts/ends is unchanged
— Sequence of events in between may (only) be reordered
— Recorded global state S* is one of the states in between

e Repeatedly pairwise swap until all pre before any post

e S* is the same as state at pre-to-post transition
— Follows from Marker-Send and Marker-Receive rules

QED

Discussion: Summary Question #3

e Describe what conclusion you draw from the paper as to how to
build systems in the future. Most of the assigned papers are
significant to the systems community and have had some lasting

impact on the area.

Wednesday

“Efficient and Scalable Thread-Safety
Violation Detection”

Guangpu Li, Shan Lu, Madanlal Musuvathi,
Suman Nath, Rohan Padhye 2019

Optional Further Reading:

“Eraser: A Dynamic Data Race Detector for
Multi-Threaded Programs”

Stefan Savage, Michael Burrows, Greg Nelson,
Patrick Sobalvarro, Thomas Anderson 1997

	15-712:�Advanced Operating Systems & Distributed Systems��Distributed Snapshots: Determining Global States of Distributed Systems�
	Slide Number 2
	Slide Number 3
	Leslie Lamport on Today’s Paper
	Global State Detection
	System Model: Processes & Channels
	System Model: Events
	Example
	Recording an Inconsistent Global State
	Global-State-Detection Algorithm
	Example
	So…In What Way is the �Recorded Global State “Meaningful” ?
	Applying to Prior Example
	Discussion: Summary Question #1
	Stability Detection
	Stability Detection Algorithm
	Discussion: Summary Question #2
	Key Theorem & Proof Sketch
	Example
	Example: Swapping Post and Pre
	Swapping Post and Pre
	Swapping Post and Pre
	Completing the Proof
	Discussion: Summary Question #3
	Wednesday

