Today’s Reminders

- Welcome Kevin
 - Office Hours: 2-4 pm Tues @ CIC 4th floor & by appointment
- Papers through end of September now posted
- Will grade one summary from each of you soon
 - Looking into sharing summaries after deadline
- Waitlist (33 currently enrolled)

Happened Before

“A system is distributed if the message transmission delay is not negligible compared to the time between events in a single process.”

- “Happened before” is only a partial ordering of events
- Must define without using physical clocks. Why?
 - System specification may not include real clocks
 - Real clocks do not keep precise physical time (clock skew)
Happened Before Definition

- The smallest relation satisfying:
 - Two events on same process are ordered
 - Message receipt ordered after associated message send
 - Transitivity: \(a \rightarrow b \) and \(b \rightarrow c \) implies \(a \rightarrow c \)

Logical Clocks (aka. Lamport Clocks)

- Clock Condition: If \(a \rightarrow b \) then \(\text{Clock}(a) < \text{Clock}(b) \)

- Satisfied if two conditions hold:
 - C1: If \(a \) and \(b \) are events in process \(P_i \), and \(a \) comes before \(b \), then \(\text{Clock}_i(a) < \text{Clock}_j(b) \)
 - C2: If \(a \) is the sending of a message by process \(P_i \) and \(b \) is the receipt of that message by process \(P_j \) then \(\text{Clock}_i(a) < \text{Clock}_j(b) \)

- An implementation using timestamps:
 - IR1: Each process \(P_i \) increments \(C_i \) between any two successive events
 - IR2: (i) Send \(T_m = C_i(a) \) along with the message from \(a \).
 (ii) Upon receiving that message, \(P_j \) sets its \(C_j \) to be \(\geq \) its present value and \(> T_m \)

Total Order of the Events

- Order events by the Lamport clock values;
 - Breaking ties arbitrarily (e.g., using process ids)
 - Fairness issues in breaking ties...

Use in Distributed Mutual Exclusion

- Goals:
 I. Must release granted resource before can be granted again
 II. Grant resources in order they are made
 III. Every request is eventually granted
 (assuming no process fails to release a granted resource)

- Straightforward centralized solution fails
 <Draw figure: \(P_1 \) sends request to \(P_0 \), \(P_1 \) sends message to \(P_2 \), \(P_2 \) receives message then sends request to \(P_0 \), but \(P_2 \)'s request arrives at \(P_0 \) before \(P_1 \)'s request. Granting \(P_2 \)'s request first violates (II)>

- Assume in-order delivery of messages from \(P_i \) to \(P_j \)
Use in Distributed Mutual Exclusion

- **Request resource:** \(P_i \) sends \(T_m; P_i \) requests resource to every other process & puts in its local request queue
- **When receive** \(T_m; P_i \) requests resource, place it on local request queue & sends timestamped ack to \(P_i \)
- **Release resource:** \(P_i \) removes any \(T_m; P_i \) requests resource message from local queue & sends timestamped \(P_i \) releases resource message to every other process
- **When receive** \(P_i \) releases resource message, remove any \(T_m; P_i \) requests resource message from local queue
- \(P_i \) is granted the resource when (i) \(T_m; P_i \) requests resource in local queue is ordered before any other request in local queue and (ii) \(P_i \) has received a message from every other process that is timestamped LATER than \(T_m \)

Problem & Generalization

- **Problem:** System halts if one process fails
 - With logical time, no way to distinguish a failed process from a paused/delayed/slow process
- **Generalization:** Works for any synchronization that can be specified in terms of a State Machine \((C, S, \varepsilon : C \times S \rightarrow S) \)
 - E.g., \(C \) is all possible requests/releases resource commands, \(S \) is the queue of waiting request commands, \(\varepsilon \) is the transition function
 - Run same basic algorithm: A process can execute a command timestamped \(T \) when it has learned of all commands issued by all other processes with timestamps \(\leq T \)

Vector Clocks

- Each local clock is a vector of \(N \) values for \(N \) processes
- \(P_i \) increments \(i \)’th value of local clock on internal event
- Include entire vector clock when send message
- When \(P_i \) receives a message with clock \(V \):
 - Increment \(j \)’th value of local clock
 - Set local clock to be elementwise max of its local clock and \(V \)
Vector Clocks satisfy Clock Condition?

- **Clock Condition:** If \(a \rightarrow b \) then Clock(a) < Clock(b)

- **Satisfied if two conditions hold:**
 - **C1:** If \(a \) and \(b \) are events in process \(p_i \), and \(a \) comes before \(b \), then Clock\(_i\)(a) < Clock\(_i\)(b)
 - **C2:** If \(a \) is the sending of a message by process \(p_i \) and \(b \) is the receipt of that message by process \(p_j \), then Clock\(_i\)(a) < Clock\(_j\)(b)

- **Answer:** Yes!

 \[
 (v_1,\ldots,v_i,\ldots,v_N) < (v_1,\ldots,v_i+1,\ldots,v_N)
 \]

 \[
 (v_1,\ldots,v_N) < (\max(v_1,x_1),\ldots,\max(v_j,x_j+1),\ldots,\max(v_N,x_N))
 \]

- **V < V’ if ≤ on each element and < on at least one element**

Anomalous Behavior

- **With respect to out-of-band communication**
 - Issue request A, call friend to have him issue request B
 - Yet B can get lower timestamp than A

- **Strong Clock Condition:** \(a \Rightarrow b \) implies Clock(a) < Clock(b), where \(\Rightarrow \) denotes happened-before when also include out-of-band events

 "One of the mysteries of the universe is that it is possible to construct a system of physical clocks which, running quite independently of each one another, will satisfy the Strong Clock Condition."

Vector Clock Properties

- **Just showed:** \(a \rightarrow b \) implies \(V(a) < V(b) \)

- **Not hard to show:** \(V(a) < V(b) \) implies \(a \rightarrow b \)

Pros and Cons of Vector Clocks vs. Lamport’s timestamps?

- **Pro:** more precise (iff)
- **Cons:** much larger clocks, more complex

Physical Clocks

- **Let** \(C_i(t) \) **denote the reading of clock** \(C_i \) **at physical time** \(t \)
 - Assume \(C_i(t) \) is a continuous, differentiable function of \(t \), except for isolated jump discontinuities where clock is reset
 - **PC1:** [assumed upper bound on rate of clock drift]
 There exists constant \(\kappa \ll 1 \) s.t. for all \(i \): \(\left| \frac{dC_i(t)}{dt} - 1 \right| < \kappa \)

- **Goal:** Bound pairwise clock skew to at most \(\epsilon \)
 - **PC2:** For all \(i,j \): \(|C_i(t) - C_j(t)| < \epsilon \) for small constant \(\epsilon \)

- **How small must** \(\kappa, \epsilon \) **be to avoid anomalous behavior?**
 - Let \(\mu \) be the minimum physical time needed to transmit out-of-band communication
 - Can ensure that \(C_i(t+\mu) - C_j(t) > 0 \) if we have \(\frac{\mu}{1-\kappa} \leq \mu \)
Physical Clocks

- **A distributed implementation:**
 - **IR1’**: If P_i does not receive a message at physical time t then $\frac{dC_i(t)}{dt} > 0$
 - **IR2’**: (i) P_i sends $T_m = C_i(t)$ along with its message.
 (ii) Upon receiving that message at time t', P_j sets $C_j(t') = \max \left(\lim_{\delta \to 0} (C_j(t') - |\delta|) T_m + \mu_m \right)$
 where μ_m is the minimum delay for any message.

- **Theorem: Max clock skew is bounded by $d(2rt + \epsilon)$**
 i.e., (max number of hops) x (2 x rate of clock skew) x (max time between point-to-point messages) + (max unpredictable message delay)

Pros: No need for reference clocks; Clocks never set backwards
Cons: Skew versus real time; Frequent neighbor communications

Network Time Protocol (NTP)

- In operation since before 1985
- Hierarchy of stratum
- Roundtrip delay δ
 - Want $t_0 + \theta = t_1 - \frac{\delta}{2}$ and $t_3 + \theta = t_2 + \frac{\delta}{2}$
 - Solve to get $\theta = \frac{(t_1-t_0) + (t_2-t_1)}{2}$
 - Add θ to current clock
 - $\theta = -128.5$, so clock = 169.5 ms

- Typically sync within 10s of milliseconds on public internet

Monday’s Paper

Eraser: A Dynamic Data Race Detector for Multi-Threaded Programs

Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, Thomas E. Anderson [SOSP’97]