
Systems for High Performance Execution of Important
Machine Learning Algorithms

The Big Data Analytics world has two big challenges: what kinds of analysis on what
kind of data generates useful results, and how can we manage the logistics of big data
and implement fast scalable frameworks for big data. In this course we are primarily
concerned with the latter questions.

In the current era of competing Big Data Frameworks, there are many frameworks
publishing papers on their advantages, but few careful comparative studies. Lots of of
open source, a number of available data sets or synthetic data set creation algorithms,
and numerous frameworks makes it obvious that good science needs detailed
comparisons.

In the first project idea for Machine Learning Systems, the specification is simple:
construct a variety of fair comparisons between open source machine learning
frameworks and deconstruct (figure out the root causes) of differences in performance.

Example frameworks:

• Mahout, https://mahout.apache.org
• Giraph, https://giraph.apache.org
• Hama, https://hama.apache.org
• GraphLab, PowerGraph, GraphChi, http://graphlab.org
• Spark, MLib, GraphX, https://spark.incubator.apache.org
• Naiad, http://research.microsoft.com/en-us/projects/naiad/
• CMU BigLearning team has an SSP, Petuum (http://petuum.org) and STRADS

framework they might share too (Wei Dai, wdai@cs.cmu.edu).

Example problems:

• triangle counting
• pagerank
• LDA
• matrix factorization
• sparse regression
• graph coloring
• shortest path

Example hardware: NSF PRObE clusters: Marmot, Kodiak, Susitna, and AWS EC2.

A good instance of this project would use at least three frameworks and at least three
problems with at least three different data sets. Doing this well will require becoming
sufficiently knowledgeable about tuning and configuring each framework to show it at its
best. It will also require instrumenting the frameworks so that you can measure internal
parameters (numbers of events, durations of phases etc) in order to understand

different behavior.

Done well, the world will be very interested, and some people will feel challenged. So
the work needs to be transparent (well documented), repeatable, and unambiguous. If
all this is achieved, a very good publication is possible.

It is certainly possible that a full comparison is too much for one person or small group,
so we can break this up into multiple more in-depth comparisons. For example, Wei Dai
is very interested in someone studying LDA in great detail:

Comparison of LDA on Yahoo!LDA, GraphLab, Google’s PLDA, and
Petuum (Dai Wei)

Latent Dirichlet Allocation (LDA) is a popular model used to discover latent topics from
text documents. There has been much efforts in scaling up the sampling algorithm with
better system implementations: Google’s PLDA [3] represents one of the earliest
implementation; Yahoo!LDA [1][2] is currently the most popular choice for large scale
LDA; GraphLab [4] shows respectable performance given that it’s a general purposed
framework; and Petuum [5][6] which has demonstrated better performance than
GraphLab on LDA. However, so far there has not been a comprehensive comparison
among the 4 implementations, and some comparisons, like the one done by GraphLab
authors [7], are outdated (they compare with the VLDB version of Yahoo!LDA (2010)
instead of the WSDM version (2012).

A comprehensive comparison of these frameworks will provide LDA practitioners a good
guide. An interesting question is why GraphLab is slower than Yahoo!LDA and Petuum
(e.g., maybe GraphLab sends much more messages than XX or GraphLab
synchronizes more often than XX.) You may explore how the graph abstraction of
GraphLab has limited the optimization, using your experiences from faster frameworks.
In other words, how would you change GraphLab’s abstraction to allow optimizations
that could remedy the problems you observe (eg., too many messages,
synchronization). To answer this question you might need to look into how the LDA
sampling algorithm is implemented on each framework’s abstraction. Overall this project
would be a good learning experience for students interested in learning state-of-the-art
ML systems and algorithm beyond Map-Reduce.

All the implementations mentioned here are open-source so can be readily executed.
While no in-depth knowledge of the sampling algorithm is needed, the student will still
benefit from digging into the algorithm a bit, but this is not too necessary. It would also
be interesting to see the performance on data set of various scales.

Contact Person: Dai Wei (wdai@cs.cmu.edu), Xun Zheng (xunzheng@cs.cmu.edu)

[1] Smola, Alexander and Narayanamurthy, Shravan. An architecture for parallel topic
models, VLDB (2010).
[2] Amr Ahmed and Mohamed Aly and Joseph Gonzalez and Shravan Narayanamurthy

mailto:wdai@cs.cmu.edu
mailto:xunzheng@cs.cmu.edu

and Alexander J. Smola Scalable inference in latent variable models WSDM, 2012.
[3] Wang, Yi and Bai, Hongjie and Stanton, Matt and Chen, Wen-Yen and Chang,
Edward Y., PLDA: Parallel Latent Dirichlet Allocation for Large-Scale Applications (2009)
[4] Yucheng Low and Joseph Gonzalez and Aapo Kyrola and Danny Bickson and Carlos
Guestrin and Joseph M. Hellerstein. Distributed GraphLab: A Framework for Machine
Learning and Data Mining in the Cloud. PVLDB (2012)
[5] Wei Dai, Jinliang Wei, Xun Zheng, Jin Kyu Kim, Seunghak Lee, Junming Yin, Qirong
Ho, Eric P. Xing. Petuum: A Framework for Iterative-Convergent Distributed ML. arXiv:
1312.7651 (2013)
[6] http://petuum.org/
[7] slide 93 of http://www.cs.berkeley.edu/~jegonzal/talks/jegonzal_thesis_defense.pptx

http://petuum.org/
http://www.cs.berkeley.edu/~jegonzal/talks/jegonzal_thesis_defense.pptx

