
Systems for High Performance Execution of Important 
Machine Learning Algorithms

The Big Data Analytics world has two big challenges: what kinds of analysis on what 
kind of data generates useful results, and how can we manage the logistics of big data 
and implement fast scalable frameworks for big data.    In this course we are primarily 
concerned with the latter questions.

In the current era of competing Big Data Frameworks, there are many frameworks 
publishing papers on their advantages, but few careful comparative studies.  Lots of of 
open source, a number of available data sets or synthetic data set creation algorithms, 
and numerous frameworks makes it obvious that good science needs detailed 
comparisons.

In the first project idea for Machine Learning Systems, the specification is simple:  
construct a variety of fair comparisons between open source machine learning 
frameworks and deconstruct (figure out the root causes) of differences in performance.

Example frameworks:

• Mahout, https://mahout.apache.org
• Giraph, https://giraph.apache.org
• Hama, https://hama.apache.org
• GraphLab, PowerGraph, GraphChi, http://graphlab.org
• Spark, MLib, GraphX, https://spark.incubator.apache.org
• Naiad, http://research.microsoft.com/en-us/projects/naiad/
• CMU BigLearning team has an SSP, Petuum (http://petuum.org) and STRADS 

framework they might share too (Wei Dai, wdai@cs.cmu.edu).

Example problems:

• triangle counting
• pagerank
• LDA
• matrix factorization
• sparse regression
• graph coloring
• shortest path

Example hardware: NSF PRObE clusters: Marmot, Kodiak, Susitna, and AWS EC2.

A good instance of this project would use at least three frameworks and at least three 
problems with at least three different data sets.  Doing this well will require becoming 
sufficiently knowledgeable about tuning and configuring each framework to show it at its 
best.  It will also require instrumenting the frameworks so that you can measure internal 
parameters (numbers of events, durations of phases etc) in order to understand 



different behavior.  

Done well, the world will be very interested, and some people will feel challenged.  So 
the work needs to be transparent (well documented), repeatable, and unambiguous.  If 
all this is achieved, a very good publication is possible.

It is certainly possible that a full comparison is too much for one person or small group, 
so we can break this up into multiple more in-depth comparisons.  For example, Wei Dai 
is very interested in someone studying LDA in great detail:

Comparison of LDA on Yahoo!LDA, GraphLab, Google’s PLDA, and 
Petuum (Dai Wei)

Latent Dirichlet Allocation (LDA) is a popular model used to discover latent topics from 
text documents. There has been much efforts in scaling up the sampling algorithm with 
better system implementations: Google’s PLDA [3] represents one of the earliest 
implementation; Yahoo!LDA [1][2] is currently the most popular choice for large scale 
LDA; GraphLab [4] shows respectable performance given that it’s a general purposed 
framework; and Petuum [5][6] which has demonstrated better performance than 
GraphLab on LDA. However, so far there has not been a comprehensive comparison 
among the 4 implementations, and some comparisons, like the one done by GraphLab 
authors [7], are outdated (they compare with the VLDB version of Yahoo!LDA (2010) 
instead of the WSDM version (2012). 

A comprehensive comparison of these frameworks will provide LDA practitioners a good 
guide. An interesting question is why GraphLab is slower than Yahoo!LDA and Petuum 
(e.g., maybe GraphLab sends much more messages than XX or GraphLab 
synchronizes more often than XX.)  You may explore how the graph abstraction of 
GraphLab has limited the optimization, using your experiences from faster frameworks. 
In other words, how would you change GraphLab’s abstraction to allow optimizations 
that could remedy the problems you observe (eg., too many messages, 
synchronization). To answer this question you might need to look into how the LDA 
sampling algorithm is implemented on each framework’s abstraction. Overall this project 
would be a good learning experience for students interested in learning state-of-the-art 
ML systems and algorithm beyond Map-Reduce.

All the implementations mentioned here are open-source so can be readily executed. 
While no in-depth knowledge of the sampling algorithm is needed, the student will still 
benefit from digging into the algorithm a bit, but this is not too necessary. It would also 
be interesting to see the performance on data set of various scales.

Contact Person: Dai Wei (wdai@cs.cmu.edu), Xun Zheng (xunzheng@cs.cmu.edu)
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