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AUTO PROVISIONING FOR LONG-RUNNING 

MAPREDUCE APPLICATIONS ON AWS EMR  

Users can easily provision a variety of small to large scale cloud resources in order to 
run analytics jobs on the cloud. To ease adoption of popular programming models, cloud 
providers are offering easy to configure platforms for non-expert users. Such platforms 
include Amazon Web Services (AWS) Elastic Map Reduce (EMR) service. EMR users 
can upload their MapReduce code and data set, however, they also have to configure 
the cluster size and type of virtualized resources to run their application on. Without 
having deep knowledge into the capabilities of the cloud resources or the requirements 
of their applications, EMR users typically end up over-provisioning or under-provisioning. 
Over-provisioning leads to increased expenditure while under-provisioning leads to 
prolonged execution time.  
 
Public cloud platforms provide several options to select virtual machine (VM) instance 
types from. To launch an EMR cluster on AWS, there are fifteen EC2 instance types to 
choose from. Each EC2 instance type varies in its processor architecture, number of 
virtual CPUs, memory, and I/O bandwidth. Specifically, the AWS instance types are 
divided into six major categories (general purpose, compute optimized, GPU instances, 
memory optimized, storage optimized and micro instances). Due to the variety of MR 
application types, provisioning the wrong resource type and size could have adverse 
effects on performance and cost. 
 
In EMR, the number of mapper and reducer slots per instance is dependent on the type 
of instance provisioned. The number of map and reduce tasks that are run also depends 
on the size and number of files of input data. The performance of and the cost incurred 
by a MapReduce job depends on four parameters: type of instance, number of 
instances, application type and size of the data set. This is especially the case for long-
running MapReduce applications where the cluster setup time does not dominate overall 
execution time. Different users run different types of MapReduce jobs and have different 
budget and deadline constraints. Auto-provisioning resources for different types of 
MapReduce applications while varying the input data set size, instance types and cluster 
size is not a trivial task. However, the question of selecting suitable resources when 
launching a MapReduce cluster is an important one. 
 
For this project, we will limit our scope to three application types, three input data set 
sizes and three instance types. The task is to automatically provision resources on EMR 
to meet a user’s specified time and budget constraints. Students will be expected to 
profile representative applications into classes, classify new applications, perform load 
and scale testing, provision resources based on user specs, and measure the automatic 
provisioning system’s effectiveness at meeting its objective. 
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