Directing Physically Based Interactions

Animating Dexterous Motions

How can we easily animate the starfish's escape?

- Appearance of intelligent motion
- Believable physical interaction with the glass box
- Dynamic, fun actions
- Animation tools accessible to anyone

Animating Dexterous Motions

Videos created by two novice users using our system.

What Control Modes are Intuitive?

User Interface Example

	⊒ + ● ∞ 10 E \v T 1	
0 > ♪ This demo shother the physics sint 1 > </th <th>ows how the user can control nulaiton to create a forward jump for l</th> <th>JUXO</th>	ows how the user can control nulaiton to create a forward jump for l	JUXO

Manipulate Bones

- Drag a bone to control its motion
 - direct control of head position

- Constrain a bone to a fixed position / orientation
 - constrain base to orientation shown

Manipulate Center of Gravity

 Drag the CG of the lamp in a tightly controlled manner to keep it balanced

 Drag the CG of the starfish abruptly to create a jump

 Drag the CG of the donut in a free form manner to create the desired animation

Manipulate Character Root Orientation

 Drag a special rotation widget for 3D rotational motions

Manipulate Joints

 Keyframe a leaping action for the worm

Set and maintain joint limits

- Run a passive controller for a soft landing
 - How? Set a single desired configuration and low stiffness

Previewing

 Observe the effect of maintaining current command for a given period of time

Speed up, slow down, advance, back up the simulation

• Trial and error to learn the character dynamics and achieve desired result

Animating Dexterous Motions

Our observation: Different control modes are needed at different times to create animations sophisticated enough to tell a story

Our solution: Put a variety of control modes into the animators hands and make them as intuitive as possible

Overview of Our System

Coarse volumetric model -> fast simulation

Fine surface detail for appearance, contacts and collision

Junggon Kim and Nancy S. Pollard, "Direct Control of Simulated Non-Human Characters," IEEE CG&A, 2011

User Interface: Real-time, trial and error (e.g., Jump like this!)

Results:

Compute muscle forces for the character to best achieve the user's goals

Interface Modes Under the Hood

The user is placing a variety of constraints on the character's motion

How do we determine how the character should behave, in a physically realistic manner, to best meet the matraints??

Interface Modes Under the Hood

Most quantities we care to measure or control have a locally linear relationship to joint accelerations and joint torques

$$A\ddot{q}_a = b$$
 and $C\ddot{q}_a \le d$

Evangelos Kokkevis, <u>Practical Physics for Articulated Characters</u>, Game Developer's Conference 2004.

Example: Bone Constraints

Express bone constraint as a linear function of joint accelerations:

Obtaining desired bone accelerations:

$$\begin{split} \ddot{x}_d &= k_p (x_d - x) - k_v \dot{x} \\ \dot{w}_d &= k_p' \; R \; \log((R)^T R_d) - k_v' w \end{split}$$

Interface Modes Under the Hood

(1) Express all constraints as a linear function of joint accelerations:

$$A\ddot{q}_a = b$$
 and $C\ddot{q}_a \le d$

(2) Solve a Quadratic Program to obtain joint accelerations:

$$\min_{\ddot{q}_a} ||A\ddot{q}_a - b||^2 + \alpha ||\ddot{q}_a||^2 \quad \text{s.t.} \quad C\ddot{q}_a \le d$$

(3) Use these accelerations for the next timestep to advance the simulation

Final Demos

Direct Control of Simulated Non-human Characters

Results (animations)

(No audio)

Realistic Physical Behavior?

http://www.youtube.com/watch?v=a-1AiExU3Vk Huai-Ti Lin, Tufts Biomimetic Devices Laboratory

Notes

Constraint priorities: Mouse drags are satisfied after everything else

Contact modeling: "hallucinate" constraints to account for pushoff forces

Objective functions: minimize joint accelerations, torques, or velocities

Speed: Simulations are real-time or better; users preferred 3X-8X slower

Ease of use: Starfish escape animations created by novices in minutes

What Control Modes are Intuitive?

Fast Simulation of Skeleton-driven Deformable Body Characters

Junggon Kim and Nancy S. Pollard

References

Junggon Kim and Nancy S. Pollard, "Direct Control of Simulated Non-Human Characters," IEEE CG&A, 2011

Junggon Kim and Nancy S. Pollard, "Fast Simulation of Skeleton-Driven Deformable Body Characters," ACM ToG, 2011

http://www.cs.cmu.edu/~junggon/