Meshes and Manifolds

Computer Graphics
CMU 15-462/15-662
Last time: overview of geometry

- Many types of geometry in nature
- Demand sophisticated representations
- Two major categories:
 - IMPLICIT - “tests” if a point is in shape
 - EXPLICIT - directly “lists” points
- Lots of representations for both
- Today:
 - what is a surface, anyway?
 - nuts & bolts of polygon meshes
 - geometry processing / resampling
Manifold Assumption

- Today we’re going to introduce the idea of manifold geometry
- Can be hard to understand motivation at first!
- So first, let’s revisit a more familiar example...
Bitmap Images, Revisited

To encode images, we used a regular grid of pixels:
But images are not fundamentally made of little squares:

Goyō Hashiguchi, Kamisuki (ca 1920)
So why did we choose a square grid?

...rather than dozens of alternatives?
Regular grids make life easy

- One reason: SIMPLICITY / EFFICIENCY
 - E.g., always have four neighbors
 - Easy to index, easy to filter...
 - Storage is just a list of numbers

- Another reason: GENERALITY
 - Can encode basically any image

- Are regular grids always the best choice for bitmap images?
 - No! E.g., suffer from anisotropy, don’t capture edges, ...
 - But more often than not are a pretty good choice

- Will see a similar story with geometry...
So, how should we encode surfaces?
Smooth Surfaces

- Intuitively, a surface is the boundary or “shell” of an object
 (Think about the candy shell, not the chocolate.)
- Surfaces are manifold:
 - If you zoom in far enough (at any point) looks like a plane*
 - E.g., the Earth from space vs. from the ground

*…or can easily be flattened into the plane, without cutting or ripping.
Isn’t every shape manifold?

- No, for instance:

Center point never looks like the plane, no matter how close we get.
More Examples of Smooth Surfaces

- Which of these shapes are manifold?
A manifold polygon mesh has fans, not fins

For polygonal surfaces just two easy conditions to check:
1. Every edge is contained in only two polygons (no “fins”)
2. The polygons containing each vertex make a single “fan”
What about boundary?

- The boundary is where the surface “ends.”
- E.g., waist & ankles on a pair of pants.
- Locally, looks like a half disk
- Globally, each boundary forms a loop

Polygon mesh:
- one polygon per boundary edge
- boundary vertex looks like “pacman”
Ok, but why is the manifold assumption useful?
Keep it Simple!

- Same motivation as for images:
 - make some assumptions about our geometry to keep data structures/algorithms simple and efficient
 - in many common cases, doesn’t fundamentally limit what we can do with geometry

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(i,j-1)</td>
<td></td>
</tr>
<tr>
<td>(i-1,j)</td>
<td>(i,j)</td>
<td>(i+1,j)</td>
</tr>
<tr>
<td></td>
<td>(i,j+1)</td>
<td></td>
</tr>
</tbody>
</table>
How do we actually encode all this data?
Warm up: storing numbers

- Q: What data structures can we use to store a list of numbers?
 - One idea: use an array (constant time lookup, coherent access)

 1.7 2.9 0.3 7.5 9.2 4.8 6.0 0.1

- Alternative: use a linked list (linear lookup, incoherent access)

- Q: Why bother with the linked list?
 - A: For one, we can easily insert numbers wherever we like...
Polygon Soup (Array-like)

- Store triples of coordinates \((x,y,z)\), tuples of indices
- E.g., tetrahedron:

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>i</th>
<th>j</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1:</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2:</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3:</td>
<td>-1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

- VERTICES
- POLYGONS

Q: How do we find all the polygons touching vertex 2?

Ok, now consider a more complicated mesh:

Very expensive to find the neighboring triangles! (What’s the cost?)
Incidence Matrices

If we want to answer neighborhood queries, why not simply store a list of neighbors?

Can encode all neighbor information via incidence matrices

E.g., tetrahedron: VERTEX ↔ EDGE

<table>
<thead>
<tr>
<th>VERTEX</th>
<th>EDGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>v0</td>
<td>e0</td>
</tr>
<tr>
<td>v1</td>
<td>e1</td>
</tr>
<tr>
<td>v2</td>
<td>e2</td>
</tr>
<tr>
<td>v3</td>
<td>e3</td>
</tr>
</tbody>
</table>

EDGE ↔ FACE

<table>
<thead>
<tr>
<th>EDGE</th>
<th>FACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>e0</td>
<td>f0</td>
</tr>
<tr>
<td>e1</td>
<td>f1</td>
</tr>
<tr>
<td>e2</td>
<td>f2</td>
</tr>
<tr>
<td>e3</td>
<td>f3</td>
</tr>
</tbody>
</table>

1 means “touches”; 0 means “does not touch”

Instead of storing lots of 0’s, use sparse matrices

Still large storage cost, but finding neighbors is now O(1)

Hard to change connectivity, since we used fixed indices

Bonus feature: mesh does not have to be manifold
Halfedge Data Structure (Linked-list-like)

- Store some information about neighbors
- Don’t need an exhaustive list; just a few key pointers
- Key idea: two halfedges act as “glue” between mesh elements:

Each vertex, edge face points to just one of its halfedges.
Halfedge makes mesh traversal easy

- Use “twin” and “next” pointers to move around mesh
- Use “vertex”, “edge”, and “face” pointers to grab element
- Example: visit all vertices of a face:
  ```cpp
  Halfedge* h = f->halfedge;
  do {
    h = h->next;
    // do something w/ h->vertex
  } while( h != f->halfedge );
  ```
- Example: visit all neighbors of a vertex:
  ```cpp
  Halfedge* h = v->halfedge;
  do {
    h = h->twin->next;
  } while( h != v->halfedge );
  ```
- Note: only makes sense if mesh is manifold!
Halfedge meshes are always manifold

- Consider simplified halfedge data structure
- Require only “common-sense” conditions

```c
struct Halfedge {
    Halfedge *next, *twin;
};
```

twin->twin == this
next != this
twin != this

(pointer to yourself!)

- Keep following `next`, and you’ll get faces.
- Keep following `twin` and you’ll get edges.
- Keep following `next->twin` and you’ll get vertices.

Q: Why, therefore, is it impossible to encode the red figures?
Halfedge meshes are easy to edit

- Remember key feature of linked list: insert/delete elements
- Same story with halfedge mesh ("linked list on steroids")
- E.g., for triangle meshes, several atomic operations:

 - **flip**

 ![Flip](image)

 - **split**

 ![Split](image)

 - **collapse**

 ![Collapse](image)

- Must be careful to preserve manifoldness!
Edge Flip (Triangles)

- Triangles \((a,b,c), (b,d,c)\) become \((a,d,c), (a,b,d)\):

- Long list of pointer reassignments \((\text{edge} \rightarrow \text{halfedge} = \ldots)\)
- However, no elements created/destroyed.
- Q: What happens if we flip twice?
- Challenge: can you implement edge flip such that pointers are unchanged after two flips?
Edge Split (Triangles)

- Insert midpoint m of edge (c,b), connect to get four triangles:

- This time, have to add new elements.
- Lots of pointer reassignments.
- Q: Can we “reverse” this operation?
Edge Collapse (Triangles)

- Replace edge \((b,c)\) with a single vertex \(m\):

- Now have to delete elements.
- Still lots of pointer assignments!
- Q: How would we implement this with a polygon soup?
- Any other good way to do it? (E.g., different data structure?)
Comparison of Polygon Mesh Data Structures

Case study: triangles.

<table>
<thead>
<tr>
<th></th>
<th>Polygon Soup</th>
<th>Incidence Matrices</th>
<th>Halfedge Mesh</th>
</tr>
</thead>
<tbody>
<tr>
<td>storage cost*</td>
<td>~3 x #vertices</td>
<td>~33 x #vertices</td>
<td>~36 x #vertices</td>
</tr>
<tr>
<td>constant-time neighborhood access?</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>easy to add/remove mesh elements?</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>nonmanifold geometry?</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
</tbody>
</table>

number of integer values and/or pointers required to encode connectivity (all data structures require same amount of storage for vertex positions)

Conclusion: pick the right data structure for the job!
Alternatives to Halfedge

- Many very similar data structures:
 - winged edge
 - corner table
 - quadedge
 - ...

- Each stores local neighborhood information

- Similar tradeoffs relative to simple polygon list:
 - **CONS**: additional storage, incoherent memory access
 - **PROS**: better access time for individual elements, intuitive traversal of local neighborhoods

- (Food for thought: can you design a halfedge-like data structure with reasonably coherent data storage?)
Ok, but what can we actually do with our fancy new data structure?
Subdivision Modeling
Subdivision Modeling

- Common modeling paradigm in modern 3D tools:
 - Coarse “control cage”
 - Perform local operations to control/edit shape
 - Global subdivision process determines final surface
Subdivision Modeling—Local Operations

- For general polygon meshes, we can dream up lots of local mesh operations that might be useful for modeling:

...and many, many more!
Next Time: Digital Geometry Processing

- Extend traditional digital signal processing (audio, video, etc.) to deal with geometric signals:
 - upsampling / downsampling / resampling / filtering ...
 - aliasing (reconstructed surface gives “false impression”)

- Also some new challenges (very recent field!):
 - over which domain is a geometric signal expressed?
 - no terrific sampling theory, no fast Fourier transform, ...

- Often need new data structures & new algorithms
What you should know:

- What is a manifold surface?
- Distinguish manifold from non-manifold surfaces
- Can a manifold surface have a boundary? Give an example.
- Describe how to store mesh information in vertex, edge, and face tables. Give an example. What are good and bad points of this data structure?
- How would you store a mesh using incidence matrices? What are good and bad points of this data structure?
- What do you need to store in a halfedge data structure? What are good and bad points of this data structure?
- How can you find all vertices in a face with this data structure?
- How can you find all faces that contain a vertex with this data structure?
- BONUS: Think of an algorithm to traverse every face in a manifold using this data structure.