Ray-axis-aligned-box intersection

What is ray’s closest/farthest intersection with axis-aligned box?

Find intersection of ray with all planes of box:

$$N^T(o + td) = c$$

Math simplifies greatly since plane is axis aligned (consider $x=x_0$ plane in 2D):

$$N^T = [1 \ 0]^T$$

$$c = x_0$$

$$t = \frac{x_0 - o_x}{d_x}$$

Figure shows intersections with $x=x_0$ and $x=x_1$ planes.
Ray-axis-aligned-box intersection

Compute intersections with all planes, take intersection of $t_{\text{min}}/t_{\text{max}}$ intervals

Intersections with x planes

Intersections with y planes

Final intersection result

How do we know when the ray misses the box?

Note: $t_{\text{min}} < 0$
Ray-scene intersection

Given a scene defined by a set of N primitives and a ray r, find the closest point of intersection of r with the scene.

“Find the first primitive the ray hits”

\[
p_{\text{closest}} = \text{NULL} \\
t_{\text{closest}} = \text{inf} \\
\text{for each primitive } p \text{ in scene:} \\
\quad t = p.\text{intersect}(r) \\
\quad \text{if } t \geq 0 \text{ && } t < t_{\text{closest}}: \\
\quad \quad t_{\text{closest}} = t \\
\quad p_{\text{closest}} = p
\]

Complexity: $O(N)$
A simpler problem

- Imagine I have a set of integers \(S \)
- Given a new integer \(k \), find the element in \(S \) that is closest to \(k \):

\[
10 \quad 123 \quad 20 \quad 100 \quad 6 \quad 25 \quad 64 \quad 11 \quad 200 \quad 30
\]

Example: \(k=18 \)

Sort integers:

\[
6 \quad 10 \quad 11 \quad 20 \quad 25 \quad 30 \quad 64 \quad 100 \quad 123 \quad 200
\]

How would you perform a modified binary search?
How do we organize scene primitives to enable fast ray-scene intersection queries?
Simple case

Ray misses bounding box of all primitives in scene
0(1) cost: requires 1 ray-box test
Another (should be) simple case
Bounding volume hierarchy (BVH)

- **Interior nodes:**
 - Represents subset of primitives in scene
 - Stores aggregate bounding box for all primitives in subtree

- **Leaf nodes:**
 - Contain list of primitives

Left: two different BVH organizations of the same scene containing 22 primitives.

Is one BVH better than the other?
Another BVH example

- BVH partitions each node’s primitives into disjoint sets
 - Note: The sets can still be overlapping in space (below: child bounding boxes may overlap in space)
Ray-scene intersection using a BVH

```c
struct BVHNode {
    bool leaf;
    BBox bbox;
    BVHNode* child1;
    BVHNode* child2;
    Primitive* primList;
};

struct ClosestHitInfo {
    Primitive prim;
    float min_t;
};

void find_closest_hit(Ray* ray, BVHNode* node, ClosestHitInfo* closest) {
    if (!intersect(ray, node->bbox) || (closest point on box is farther than closest.min_t))
        return;

    if (node->leaf) {
        for (each primitive p in node->primList) {
            (hit, t) = intersect(ray, p);
            if (hit && t < closest.min_t) {
                closest.prim = p;
                closest.min_t = t;
            }
        }
    } else {
        find_closest_hit(ray, node->child1, closest);
        find_closest_hit(ray, node->child2, closest);
    }
}
```

How could this occur?

CMU 15-462/662, Spring 2017
void find_closest_hit(Ray* ray, BVHNode* node, ClosestHitInfo* closest) {
 if (node->leaf) {
 for (each primitive p in node->primList) {
 hit, t = intersect(ray, p);
 if (hit && t < closest.min_t) {
 closest.prim = p;
 closest.min_t = t;
 }
 }
 } else {
 (hit1, min_t1) = intersect(ray, node->child1->bbox);
 (hit2, min_t2) = intersect(ray, node->child2->bbox);
 NVHNode* first = (min_t1 <= min_t2) ? child1 : child2;
 NVHNode* second = (min_t1 <= min_t2) ? child2 : child1;
 find_closest_hit(ray, first, closest);
 if (second child’s min_t is closer than closest.min_t)
 find_closest_hit(ray, second, closest);
 }
}
Another type of query: any hit

Sometimes it’s useful to know if the ray hits ANY primitive in the scene at all (don’t care about distance to first hit)

```cpp
bool find_any_hit(Ray* ray, BVHNode* node) {
    if (!intersect(ray, node->bbox))
        return false;
    if (node->leaf) {
        for (each primitive p in node->primList) {
            (hit, t) = intersect(ray, p);
            if (hit)
                return true;
        }
    } else {
        return (find_closest_hit(ray, node->child1, closest) ||
                find_closest_hit(ray, node->child2, closest));
    }
}
```

Interesting question of which child to enter first. How might you make a good decision?
For a given set of primitives, there are many possible BVHs
\((2^N - 2\) ways to partition \(N\) primitives into two groups)
How would you partition these triangles into two groups?
What about these?
Intuition about a “good” partition?

Partition into child nodes with equal numbers of primitives

Better partition
Intuition: want small bounding boxes (minimize overlap between children, avoid empty space)
What are we really trying to do?

A good partitioning minimizes the cost of finding the closest intersection of a ray with primitives in the node.

If a node is a leaf node (no partitioning):

\[C = \sum_{i=1}^{N} C_{\text{isect}}(i) \]

\[= NC_{\text{isect}} \]

Where \(C_{\text{isect}}(i) \) is the cost of ray-primitive intersection for primitive i in the node.

(Common to assume all primitives have the same cost)
Cost of making a partition

The expected cost of ray-node intersection, given that the node’s primitives are partitioned into child sets A and B is:

\[C = C_{\text{trav}} + p_A C_A + p_B C_B \]

\(C_{\text{trav}} \) is the cost of traversing an interior node (e.g., load data, bbox check)

\(C_A \) and \(C_B \) are the costs of intersection with the resultant child subtrees

\(p_A \) and \(p_B \) are the probability a ray intersects the bbox of the child nodes A and B

Primitive count is common approximation for child node costs:

\[C = C_{\text{trav}} + p_A N_A C_{\text{isect}} + p_B N_B C_{\text{isect}} \]

Where: \(N_A = |A|, N_B = |B| \)
Estimating probabilities

For convex object A inside convex object B, the probability that a random ray that hits B also hits A is given by the ratio of the surface areas S_A and S_B of these objects.

$$P(\text{hit}_A|\text{hit}_B) = \frac{S_A}{S_B}$$

Surface area heuristic (SAH):

$$C = C_{\text{trav}} + \frac{S_A}{S_N} N_A C_{\text{isect}} + \frac{S_B}{S_N} N_B C_{\text{isect}}$$

Assumptions of the SAH (may not hold in practice):

- Rays are randomly distributed
- Rays are not occluded
Implementing partitions

- Constrain search for good partitions to axis-aligned spatial partitions
 - Choose an axis
 - Choose a split plane on that axis
 - Partition primitives by the side of splitting plane their centroid lies
 - $2N-2$ possible splitting positions for node with N primitives. (Why?)
Efficiently implementing partitioning

- Efficient modern approximation: split spatial extent of primitives into B buckets (B is typically small: B < 32)

For each axis: x, y, z:
 initialize buckets
 For each primitive p in node:
 b = compute_bucket(p.centroid)
 b.bbox.union(p.bbox);
 b.prim_count++;
 For each of the B-1 possible partitioning planes evaluate SAH
 Execute lowest cost partitioning found (or make node a leaf)
Troublesome cases

All primitives with same centroid (all primitives end up in same partition)

All primitives with same bbox (ray often ends up visiting both partitions)
What you should know:

- Compute ray - bounding box intersection
- Construct a bounding box hierarchy for a given collection of objects.
- Calculate traversal order of a bounding box hierarchy for a given ray.
- What is the Surface Area Heuristic (SAH) and what goals is it trying to achieve?
- Explain how to choose a bounding box partition using the SAH
- (from last week) Be able to distinguish between object-centric (primitive partitioning) acceleration structures and space-centric (space-partitioning) acceleration structures
- (from last week) Know the difference between these acceleration structures, how to build them, how to traverse them, and when to use each type:
 - bounding box and bounding sphere hierarchies
 - KD-trees
 - octrees
 - grids