
FRACTRAN: A SIMPLE UNIVERSAL PROGRAMMING
LANGUAGE FOR ARITHMETIC

,I 1//

1.H. Conway

Department of Mathematics
Princeton Un iversity
Princeton, NJ 08544

1. Your Free Samples or FRACTRAN.
/ 11 I'

To play the f raction game corresponding to a given list

of fractions and starting integer N. you repeatedly multiply the integer

you have at any stage (init ially N) by the earliest /; in the list for which

the answer is integral. Whenever there is no such fi t the game stops.

(Formally, we define the sequence {Nn } by No = N, NII ... 1 = Ii Nil '

where i (1 :S; i ~ k) is the least i for which /; Nil is integral. as long as

such an j exists.)

T heorem 1: When PRIMEGAME:

17 78 19 23 29 77 95 77 I II 13 15 I 55 --------------9 1 85 51 38 33 29 23 19 17 13 II 2 7 1

is started at 2, the oilier powers of 2 that appear, namely.

are precisely those whose indices aTe the prime numbers, in order of mag
nitude.

-4-

Theorem 2: When PIGAME:

365 .12....lJ.... 679 3159 ~ 473 638 434 J!2... ...!2... .lJ....
46 161 575 451 413 407 371 355 335 235 209 122

31 41 517 111 305 23 73 61 37 19 89 41 833 53 ------------------- --
183 115 89 83 79 73 71 67 61 59 57 53 47 43

86 13 23 67 7 1 83 475 59 41 1 89
41 38 37 31 29 19 17 13 291 7 11 1024 97

is started at 2n. the next power of 2 to appear is 21t(n). where for

n = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

,,(n) = 3 1 4 59265358979323846

For an arbitrary natural number n, 1t{n) is the nth digit after the
point in the decimal expansion of the number 1t.

Theorem 3: Define l e{n) = m if POL YGAME:

583 629 437 82 615 37 1 1 53 43 23 341
559 55 1 527 517 329 129 115 86 53 47 46

41 47 29 37 37 299 47 161 527 159 ----------------
43 41 37 31 31 29 23 15 19 7 17 13 3

when started at c22~. stops at 22"', and otherwise leave l e(n) undefined.

Then every computable function appears among 10' II' 12, .. .

2. The Catalogue.

We remark that the "catalogue numbers" c are easily computed for

some qu ite interesting functions. Table I and its notes give Ie for any c

whose largest odd div isor is less than 2 10 = 1024.

-5-

Table 1. The Catalogue

e All defined values of Ie

0 none
I n->n
2 0->1
4 0->2
8 I -> 2 In this Table,
16 2->3 n denotes an
64 I -> 3 arbitrary
77 n->O non-negative
128 0->3 integer.
133 0->0
255 n+ l -4n+l
256 3->4
847 n->I

37485 0-40,n+1-4n
2268945 n-4n+l

2' a-4bif2b -2°=k
7. 112.1: n ->k

15 . 102~'"
7

n-4n+k

ex n -41t(n)

We also have

f2'A=fo;

f 2'D =fl3J (k = 0) or fo (k > 0);

f 2'E = fm (k = 0) or f 2, (k > 0) ;

-6-

where

A

B

B'
C
C'
D
E

is

is

is

is

is

is

IS

any odd number < 1024 not visible below:
1,3,9,13,17,27,39,45,51,81,105,115,117,135,145,153,155,

161,169,185,195,203,205,217,221,235,243,259 ,287 ,289,315,

329,345,351,405,435,459,465,483,507,555,585,609,615,65 1,

663,705,729,777,861,945,975,987,1017, ...

165,495, ...

77,91,231,273,385,455,539,1015, ...

847, 1001, ...

133, 285, 399, 665, 855, ...

255,

Figure 1 gives a c for which fc(n) is the above function 1t(n)

.517 1011s100! ill 101 16100! 30.5 10117100! 11101"100! 1110119100!
+289 +283 +279 +273 +271

~10130100! 1!. 101 31 100! !.!lOln lOO! 475 101 33 100! 12.10134100!
+ 2 31 + 229 + 2 19 + 2 17 + 213

Figure 1. The constant cn: .

-7-

3. A void Brand X.

Works that develop the theory of effective computation are often writ

ten by authors whose interests are more logical than computational, and so

they seldom give elegant treatments of the essentially computational parts

of this theory. Any effective enumeration of the computable functions is

probably complicated enough to spread over a chapter, and we might read

that "of course Ihe explicit computation of Ihe index number for any func

tion of interest is totally impracticable." Many of Ihese defects stem from

a bad choice of the underlying computational model.

Here we take the view that it is precisely because the particular com

putational model has no great logical interest that it should be carefu lly

chosen. The logical points will be all Ihe more clear when Ihey don't

have to be disentangled by the reader from a clumsy program written in an
awkward language, and we can then "sell" the theory to a wider audience

by giving simple and striking examples explicitly. (It is for associated

reasons that we use the easily comprehended tenn "computable function"
as a synonym for the usual "partial recursive function.")

4. Only FRACTRAN Has These Star Qualities.

FRACTRAN is a simple theoretical programming language for arith

metic that has none of the defects described above.

• Makes workday really easy!

FRACTRAN needs no complicated programming manual - its entire

syntax can be learned in 10 seconds, and programs for quite complicated
and interesting functions can be written almost at once.

• Gets those functions really clean!

The entire configuration of a FRACTRAN machine at any instant is

held as a single integer - there are no messy "tapes" or olher foreign con
cepts to be understood by the fledgling programmer.

-8-

A

17
91

• Matches any machine on the markel!

Your old machines (Turing, etc.) can quite easily be made to simulate
arbitrary FRACfRAN programs, and it is usually even easier to write a

FRACfRAN program to simulate other machines.

• Astoundingly simple universal program!

By making a FRACfRAN program that simulates an arbitrary other

FRACTRAN program, we have obtained the simple universal FRAC
TRAN program described in Theorem 3.

5. Your PRIMEGAME Guarantee!

In some ways, it is a pity to remove some of the mystery from our
programs such as PRIMEGAME. However, it is well said [2] that " A
mathematician is a conjurer who gives away his secrets," so we' ll now
prove Theorem 1.

To help in Figure 2, we have labe led the fractions:

B C D E F G H I J K L M N

78 19 23 29 77 95 77 1 11 13 15 1 55
85 51 38 33 29 23 19 17 13 11 2 7

and we note that AB = 2x3 7 5 EF= - DG = -
5 x 7 ' 3 • 2 .

We let n and d be numbers with 0 < d < n and write
n = qd + r (0 ~ r < d) . Figure 2 illustrates the action of PR[ME

GAME on the number 5" 7d13. We see that this leads to 5" 7d-
1 13 or

5"+1 7" 13 according as d does or does not divide n. Moreover, the
only case when a power of 2 arises is as the number 2" 7d- 1 when d = 1.

-9-

sit 7d 13

~ (AB)d J

2d 3d 5"" 11

~ (EF)d K

2d 5 7d 13

~ (AB)d J

22d 3d 5n-U 11

~ (EF)d K

22d 5n-2d 7d 13

~ (AB), J

~ (EF)d K

2qd S' 7d 13

~ (AB), A
21t 3' 7d-r-l 17

r>% 'x=O
2lt 3,-17d-r-1 19

~ (DG)" H
3r-1 511 7d-, 11

~ (EF)~I K

511 7d-l 13

21t 7d-l

~L"Md-IN

3lt Sn+lll

~ (EF)" K

Sn+l 7" 13

Figure 2. The action of PRIMEGAME.

It follows that when the game is started at Sit 711
-

1 13, it tests all

numbers from n- l down to 1 until it first finds a divisor of n, and then
continues with n increased by 1. In the process, it passes through a power

of 21t of 2 only when the largest divisor of n that is less than n is d = 1 ,
or in other words, only when n is prime.

-10-

6. FRACTRAN - Your Free Introductory Offer.

A FRACTRAN program may have any number of lines, and a typical
line might have the fonn

line 13: ~ ~ 7, ; ~ 14 .

At this line, the machine replaces the current working integer N by

~ N, if this is again an integer, and goes to line 7. If ~ N is not an

. t b 4 N · h ld to eger, ut 5" IS, we s au instead replace N by ; N, and go to line

14. If neither ~ N nor ; N is integral, we should stop at line 13.

More generally, a FRACfRAN program line has the fonn

line
P2 Pk
- ~ n2' ... , - -7 nk .
q2 qk

The action of the machine at this line is to replace N by Pi N for the
q,

least i (1:5 i :5 k) for which this is integral, and then go to line n1 ; or,

if no PiN is integral, to stop at line n.
q,

and serves as an unconditional stop order.)

(A line with k = 0 is pennitted

A FRACTRAN program that has just n lines is called a
FRACTRAN-n program. We introduce the convention that a line that

cannot be jumped to counts as a ~ -line. (Sensible programs will contain

at most one ~ -line, the initial line.)

We write

[!:..'.. P2 Pk J
q1 q2 qk

for the FRACfRAN-l program

-11-

line 1
P2 Pk

1, - ~l, ... , - -->
q2 qk

We shall see that every FRACTRAN program can be simulated by a

FRACTRAN-l program which starts at a suitable multiple of the original
I starting number. With a FRACTRAN-l- program, we can make this
2

multiple be 1.

The FRACfRAN-l ~ program

line

line I

is symbolized by

P,
- ~l, ...
Q,

Note that the FRACTRAN-l ~ program

mlfll, ... It 1

p .
- ' --> 1 , Q

j

started at N. simulates the FRACTRAN-l program

If, I, ... Itl
started at mN .

We shall usually suppose tacitly that our FRACTRAN programs are

only applied to working numbers N whose prime divisors appear among

the factors of the numerators and denominators of the fractions mentioned.

-12-

7. Beginners' Guide to FR ACTRAN Programming.

It's good practice to write FRACfRAN programs as flowcharts, with
a node for each program line and arrows between these nodes marked

with the appropriate fractions. We use the different styles of arrowhead

>f » f t> f

for the options with decreasing priorities from a given node, and if several
options with fractions f, g, h at a node have adjacent priorities, we often

amalgamate them into a single arrow:

The different primes that arise in the numerators and denominators of
the various fractions may be regarded as storage registers, and in a state in
which the current working integer is

N = 2a 3b 5c 7d ... ,
we say that

register 2 holds a, Of r2 = a
register 3 holds b, Of r3 = b
register 5 holds C, Of rs = c
register 7 holds d, Of r7 = d

etc.

FRACfRAN program lines are then regarded as instructions to
change the contents of these registers by various small amounts , subject to

the overriding requirement that no register may ever contain a negative
number. Thus the line

line

either replaces '2 by

Of replaces '2 by

or SlOpS

2 13'---+7 . 3 '

r2 + 1 , "
r2 + 2 , "

-13-

4 - --+ 14
5

by r3 - I

by rs - I

(if r3 > 0)

(if " > 0)
(if r3 = rs = 0).

In our figures, urunarked arrows are used when the associated frac·
tions are 1. A tiny incoming arrow to a node indicates that that node will
be used as a starting node; a tiny outgoing arrow marks a node that may
be used as a stopping node. A few simple examples should convince the
reader the FRACTRAN really does have universal computing power.

(Readers familiar with Minsky 's register machines will see that FRAC

TRAN can trivially simulate them.)

The program

is a destructive adder: when started with T2 = a, T3 = b, it stops with

T2 = a + b, T3 = O . We can make it less destructive by using register 5 as

working space: the program

when started with T2 = a, "3 = b, T5 = O. stops with T2 = a + b .

T3 = b, TS = O.

By repeated addition, we can perfonn muJtiplication: the program

3
S

started with T2 = a . "3 = b. TS = O. T7 = C , stops with T2 = a + be ,

T3 = b , TS = T7 = O. We add an order ~ ("clear 3") at the

starting/finishing node and Connulate the result as an official FRACfRAN
program:

-14-

line 1
I

· - -+ 2 · 7 •

line 2' 10 -+ 2 . 3 •

I
- 1
3

I - 3
I

line 3 . 1. -+ 3 1. -+ 1 · 5 'I .

When started at line 1 with N = 3b 7c, it stops at line I, with N = 2bc.

The program obtained by preceding this one by a new

line 0 . 2.!. -+ 0 .1 -+ 1 . 2 • I '
,

when started at line 0 with N = 2n, stops at line 1 with N = 2n •

8. How to Use the FRACTRAN-l Model.

You can use a FRACTRAN-l machine to simulate arbitrary FRAC
TRAN programs. You must first clear the given program of loops, in a
way we explain later, and then label its lines (nodes) with prime numbers
P, Q, R, . . . larger than any of the primes appearing in the numerators
and denominators of any of its fractions. The FRACfRAN-l program

simulates

by the fractions

line P . .!!. -+ Q . b •
c
- R d •

!!Q cR eS
bP dP fP

e f S •...

in that order. If the FRACTRAN-O program when started with N in state
P stops with M at line Q , the simulating FRACfRAN-I program when
started a PN stops at QM .

Manu!aclUrer's note. Our guarantee is invalid If you use your

FRACTRAN·} machine in this way to simulate a FRACTRAN program

that has loops at several nodes. Such loops may be eliminated by splitting

nodes into two.

-15-

The third of our examples

7

becomes 17

10 3
"3 ""5

3
T

when each of the two nodes with a loop is split in this way, and the new

nodes are labeled with the primes 11, 13, 17, 19, 23. Accordingly, it is

simulated by the FRACTRAN-l program

[11 170 ..!2. 1l 69 .!!. J.
77 39 13 17 95 19

If started with N = 2a 3b 7c 11, this program stops with
N = 2a+bc 3b 11. (The factors of 11 here correspond to the starting and

stopping states of the simulated machine.)

We note that it is permissible to label one of the states with the

number 1, rather than a large prime number. The fractions corresponding
to transitions from this state should be placed (in their proper order) at the

end of the FRACTRAN-l program. If this is done. loops, provided they

have lower priority than any other transition, are pennitted at node 1. Thus
the FRACfRAN-l program

-16-

[170 ..!2. 11 ~ ...!.. 11.!. J
39 13 17 95 19 7 3

simulates the previous program with a loop order ! adjoined at the

starting/stopping node. which has been relabelled 1. This program, started

at 3b 7c , stops at 2bc.

A given FRACI'RAN program can always be cleared of loops and

adjusted so that 1 is its only stopping node.]t follows that we can simu

late it by a FRACTRAN-l program that starts at PN and stops at M when

the original program started at N and stopped at M. As we remarked in

Section 6, we can simulate this by a FRACfRAN- l ~ program

P[... J

which starts at N and stops at M .

9. Your PIGAME Guarantee.

We now prove Theorem 2, which

the program

[365 29
46 161

is equivalent to the assertion that

(obtained by ignoring factors of 97 and dropping the final fraction ~9 of

PIGAME). when started at 2" . 89, stops at 21t(n). This FRACTRAN-l

program has been obtained from the FRACTRAN program of Figure 3 by
the method outlined in the last section. The pairs of nodes 13 & 59, 29 &

71. 23 & 73, 31 & 67, and 43 & 53 were originally single nodes with

loops.

We shall only sketch the action of this program, which we separate
into three phases. The first phase ends when the program first reaches

node 37. the second phase when it first reaches node 41 , and the third
phase when it finally stops, at node 1.

-17-

47 ---»~) -17
49

Figure 3. A FRAcrRAN program for digits of 1t •

The first phase. started at 89 with register contents

reaches 37 with contents

where E is a very large even number. To see this, ignore the 5 and 11

registers for a moment, and see that it initially sets r7 == 2. Then each

pass around the triangular region multiplies r7 by 5 and puts it into r 3

and is followed by passes around the square region which double r 3 and

put it back into r7' This is done n times. so that at the end of this phase

we have r7 = 2 . 10", as desired.

The first pass around the square ends with 4 in rs. and each subse

quent pass at least doubles this number, while keeping it even. At the last

stage we pass around this region 10" times and finish with an even

number E 2: 4 X 210" in rs' It's easy to check that registers 2, 3, and 11

end with the indicated values.

At the end of the second phase. we shall have

-18-

r3 = 2 x 10" x £(£-2)(£-2)(£-4)(£-4)(£-6) ... 4 . 4 . 2 . 2 ~ N •

rll = 1 x (£-1)(£-1)(£-3)(£-3)(£-5)(£-5) ... 5 . 3 . 3 . 1 ~ D .

This is fairly easy to check, the essential point being that each sojourn

in the upper region multiplies'7 by TS and puts it into Til (preserving the

value of rs but clearing '7)' while in the lower region, we multiply

'3 by '5 into '7 in a similar way. and then (at the left) transfer Til back

to '3" Register 5 is decreased by 1 as we pass from the upper to the lower

region; but when rs = 1 we instead clear it and pass to node 41, entering

the third phase.

Now Wallis' product is

1t 224 466 8 8 10 10 -=---------_ .. .
213355779911

in which the successive fr:actions are obtained by alternately increasing the

denominator and numerator. If we truncate it so as only to include all fac
tors whose numerator and denominator are at most K . we obtain an

approximation 7tK for 1t which is within at most ; of 1t. So our

~ = IOn. 1t£ ' where 7tE is a very good approximation indeed to 1t. It is

in fact so good that the nth decimal digit of 1C£ is the same as that of 1C.

This digit can be obtained by reducing the integer part of ~ modulo 10,

and it is easy to check that the third phase of our program does just this,

putting the answer in register 2 and clearing all other registers.

The assertion about the nth decimal digit of 1t£ is not trivial. For

n = 0, our approximation 1C£ is 1t4 = 3
9
2. For n = 1 or 2, we have

1t 1
11C£ - 1C 1 < to which is less than I()()()' and since 1C = 3.141

4x2

-19-

the nth digits (n = 1 and 2) after the decimal point in 1t£ must both be

correct.

For n ~ 3, the error in 1t£ is at most

The desired assertion now follows from Mahler's [4] famous irra·

tionality measure for 1t: if l!.. (in least tenns) is any nonintegral rational
q

number, then

10. How to Use Our Universal Program.

In this section, we prove Theorem 3, using an ingenious lenuna due to

John Rickard. We shall call a FRACTRAN·l program [fl,h, ... ,ft]

monotone if f1 <h <13 < ... <ftc .
Lemma: Any FRACTRAN-l program can be simulated by a monotone

one that starts and stops with the same numbers.

Proof. Choose a new prime P that is bigger than the ratio between any

two of the Ii and bigger than the inverse of any Ii. Then

I 2 3 pk [p' Pf,. Ph. P'!,. 'I, J simulates [ft.!,.!,.· .. ,f, J and is

monotone. The new program behaves exactly like the old one, except that

at each step a power of P is introduced, only to be immediately cleared
away before we copy the next step.

We shall call a FRACTRAN-l ~ program

17.h.·· .. ~ [ft ,!,.· .. ./, J
monotone if

17 <h < ... <~ and f, <!, < ... <f..

-20-

Then our universal program simulates monotone FRACTRAN-l ~
programs. It codes such a program by three numbers, M" , M, and d,

defined as follows.

We take d to be any common denominator of all the fractions men

tioned and suppose the given FRACTRAN-l ~ program is

•• •
ml mz mj ml mz mk -- ... -[-- ... _]
d d d d d d

We then adjoin dummy numbers mj+l and m.k+I' which are both mul

tiples of d and which satisfy

and

where

The universal program POL YGAME, started at

2N 3M SM" 17d- 1 23

will simulate the given FRACTRAN-l ~ program, started at N . This

universal FRACTRAN-l program was obtained from the FRACTRAN

program shown in Figure 4, and accordingly, we consider starting the

latter with rz ::: N, r3 = M, rs = M", r17 = d-l ,at the node 23.

This works roughly as follows. After a new N has been found. the

program computes successive multiples N, 2N, 3N • .. . • mN, and simul

taneously repeatedly halves M to get [M/2]. [M14], ... , [Ml2m]. If

[M12m] is odd, so that m is one of the mj • it sees whether Nm is a

multiple of d, and if so resets M and takes a new N = mNld , unless

m was mk+l (i.e., [MI2m] = I), when it arranges to stop at node I with
-21-

register 2 containing N and all other registers empty. For the first pass,

it uses M* in place of M.

:; (y,.id 0 :;,H

l~-~~;iE-f2-~ -;: "17
37&29 » 23 - eo -- 47&41

0" 13 f- « -- 02 IS
19 li.T

Figure 4. A flowchart for POL YGAME.

Registers 13, 17, 19 function as a counter. whose count is stored in a

fonn from which we can see at once if it is a multiple of d. If

r13 = q. r l9 = r, rl7 = d - 1 - r. with 0 S r < d •

then the count is the number qd + r. If the machine arrives at node 31
("enters the counter") with these values, then when it next arrives at node

23 ("leaves the counter"), we shall have

rn = q, r19 = r + 1. rl7 = d - 1 - (r + I), if r < d - 1

r13 = q + 1. rl9 = O. rl7 = d - I, if r = d - I .

In other words. the value of the count will have increased by 1.

So if the machine is started at 23, with TS = Til = 0 and T2 = N. it will

increase the count by N while transferring N from register 2 to register

11, and then go to node 47 (where its first action will be to retransfer N

from register II back to register 2).

-22-

T
ab

le
 2

.
T

he
 A

ct
io

n
o

f
PO

L
Y

G
A

M
E

C
on

te
nt

s
of

 r
eg

is
te

rs
:

no
de

2

3
5

7
11

13

17

19

ac

tio
n

23

N

M

M
m

0

0
qm

d

-I
-,

'm

~

M
m

ev

en

m

M
m

od

d
I

N

M
-M

m
+

l
0

M
m

+t

0
qm

d

-I
-,

'm

t>r

m

'm
;t

 0

23

N

M
-M

m
+l

0

M
m

+t

0
qm

d-

I-
,

'm

m

. i:l
 •

r
=

 0

m

47
 &

 4
1

0
M

-M
m

+1

0
M

m+
1

N

qm
+l

d

-l
-r

 m
+

l
'm

+1

23

N

M

M
m

+1

0
0

qm
+l

d-

l-
r m

+
1

'm
+1

47
 &

 4
1

0
0

0
M

m

N

0
d

-I

0
M

m
+

;:

- d
M

m
+

l
=

 0
23

m

N

d
M

M

0

0
0

d
-I

0

1
N

0

0
0

0
0

0
0

m
N

 =
 qm

 .
 d

 +
 'm

 (0
 "

 '
m

 «
I)

M

 m
 =

 [M
o

I
2m

 I

After these remarks, the reader should have little difficulty in verifying the

transitions between particular configurations shown in Table 2.

We suppose that for particular positive numbers d, N, M ,and Mo

with [~ Ma] ~ M we define for varying values of m the numbers

Mm> qm' rm by

Then Table 2 shows that unless M m is odd and r m = 0, the special

type of configuration in the first line of the table leads to a similar one (in

the fifth line) with m increased by 1. In the excepted case, if Mm+l '# ° ,
we obtain another such special configuration (in the seventh line), but with

m (and the count) reset to 0, the new initial value Mo = M for M m' and

m; as the new N. [f instead Mm+l was 0, we arrive at the last line of

the table, and SLOp at node 1, with N in register 2 and all other registers

empty. The cases with Mm odd and r m = ° are called resets.

Now suppose we start the machine in the special configuration in the

top line of the table, with m = 0, and the initial value Mo of Mm set to the

number

where

ma < ml < ... < mk+l

and mk+l is divisible by d. Then before the next reset, we have the

equivalences

Mm odd ¢:::::::::) m is one of the mj
r m = 0 ¢:::::::::) mNld is an integer

Mm+1 = 0 ¢:::::::::) m = mk .

So the next reset will be at the first of the mi for which mj Nld is

integral, and will either
-24-

replace N by mi Nld, and reset m to 0 and M m to M (if i < k),

or stop at node I . with N in register 2 and the rest empty (i = k) .

This completes the required verifications. Initially, we set m = 0 and

Mo = M*, but all subsequent resets will put Mo = M. in accordance with

the rules for FRACfRAN-I ~ programs.

A FRACfRAN-l program is a FRACfRAN-I ~ program with

M = M*. For this we can use the alternate catalogue number
7M I7d- 1 41.

11. Applications, Improvements, Acknowledgments.

For the function

g(N) ~ { t N (N even)

3N + 1 (N odd),

the Collatz problem asks whether for every positive integer N there exists

a k for which l(N) = I . See [3] for a survey of this problem.

We can ask similar questions for more general Collatz junctions

where aN and bN are rational numbers that only depend on the value of

N modulo some fixed number D. We proved in [I] that there is no

algorithm for solving arbitrary Collatz problems. Indeed. for any comput

able function fin), there is a FRACTRAN-l program [fl h ... Ik] with

the property that when we start it at 2n • the first strictly later power of 2
will be 2j{n). In other words, we can define f by

2 j{,) ~ l (2'),

where k is the smallest positive integer for which gk (2!1) is a power of

2, and !he function g(N), which has the above form, is just fi N for the

least j which makes this an integer. This result is an explicit version of
Kleene's Normal Form Theorem.

-25-

We note that g(N)IN is a periodic function with rational values. so

that g(N) is a Collatz function for which bN is always O. So even for Col

latz functions of this special type there can be no decision procedure. By

applying the argument to a universal fraction game, we can get a particu

lar Collatz-type problem with no decision procedure.

(We remark that of course Collatz problems with arbitrary bN are

harder to solve, rather than easier. We might, for instance, define one that
simulates a program written in 10 segments, each segment using only the
numbers ending in a given decimal digit. and in which control is
transferred between the segments only at certain crucial--and recursively
unpredictable--times.)

John Rickard tells me that he has found a seven fraction universal
2~ 2 .11: ..) program of type 2 . c ~ 2 and a nine fraction one of type

2 n . c ~ 2f{n). However, it seems that his fractions are much too compli

cated ever to be written down. I used one of Rickard's ideas in Section
10. Mike Guy gave valuable help in computing the catalogue numbers in
Section 2. Of course, the responsibility for any errors in these numbers
rests entirely with him.

REFERENCES

[1] J.H. Conway, " Unpredictable Iterations, " in Proceedings of the
Number Theory Conference, Boulder, Colorado, pp. 49-52 (1972).

[2] J.H. Conway, "FRACfRAN - A Simple Universal Programming
Language for Aridunetic," Open Problems Commun. Comput., pp. 4-

26 (1986).

[3] J.C. Lagarias, "The 3x + 1 Problem and Its Generalizations," Am.
Math. Monthly, 92, No. I, pp. 3-25 (1985).

[4] K. Mahler, "On the Approximation of 1t ," indagnationes Math., 15,

pp. 30-42 (1953).

-26-

