NEW FEATURE: If your homework is typeset (as opposed to handwritten), you will receive 1 bonus point.

1. **(Problems in NP.)** (10 points.)

 (a) (5 points.) Let $HMLCS$ ("half-length multi longest common subsequence") be the language of all lists $\langle \omega_1, \omega_2, \ldots, \omega_m \rangle$, where:

 - $\omega_1, \ldots, \omega_m \in \{0, 1\}^\ell$ for some $\ell \in \mathbb{N}$;
 - $\omega_1, \ldots, \omega_m$ have a common subsequence $z \in \{0, 1\}^k$ with $k \geq \ell/2$.

 Prove that $HMLCS \in \text{NP}$.

 (b) (5 points.) Let DCF ("different circuit functionality") denote the language of all pairs $\langle C_1, C_2 \rangle$ where:

 - C_1 and C_2 are Boolean circuits;
 - C_1 and C_2 have the same number of input gates (we will refer to this number as n, bearing in mind it’s not the same as $|\langle C_1, C_2 \rangle|$);
 - C_1 and C_2 do not compute the same function $\{0, 1\}^n \rightarrow \{0, 1\}$.

 Prove that $DCF \in \text{NP}$.

2. **(NP in EXP.)** (10 points.) Prove $\text{NP } \subseteq \text{EXP}$.

3. **(Unit Clauses and Horn-SAT.)** In this problem, you will want to use the convention that an “empty clause” (i.e., a clause containing 0 literals) is equivalent to \bot (False). This makes sense: the definition of an “OR”-clause is that it is \top (True) iff at least one literal in it is \top; so if there are no literals in it, it’s indeed vacuously \bot. Similarly, you will want to use the convention that an “empty CNF” (i.e., one with no clauses in it) is equivalent to \top. Again this makes sense: the definition of an “AND” of clauses is that it is \top iff all of its clauses are \top; so if it has no clauses, it’s indeed vacuously \top.

 (a) (5 points.) Let C be a CNF formula for which we are interested in deciding satisfiability. A *unit clause* in C is simply a clause with one literal, so either x_i or $\overline{x_i}$. If C has a unit clause, say x_i, the following is an “obvious” thing to do: for every clause where x_i appears, delete that clause; and, for every clause where $\overline{x_i}$ appears, delete $\overline{x_i}$ from that clause. Similarly, if C contains the unit clause $\overline{x_i}$, the “obvious” thing to do is delete every clause containing $\overline{x_i}$ and delete x_i from every clause. In either case, doing this “obvious” thing is called doing unit clause propagation.

 Prove that doing unit clause propagation preserves the satisfiability of C; i.e., when you do it, if C was satisfiable before then it is satisfiable afterward, and if it was unsatisfiable before then it is unsatisfiable afterward.

 (b) (5 points.) A formula C is called a *Horn-CNF* if every clause contains at most one positive literal. Prove that HORN-SAT, the task of deciding whether an input Horn-CNF is satisfiable or not, is solvable in polynomial time. (Hint: Given a Horn-CNF, split into two cases: (i) every clause contains at least one *negative* literal; (ii) there is a clause containing zero negative literals.)
4. **(XOR-SAT.)** XOR-SAT is a problem similar to CNF-SAT, except instead of all the clauses being ORs of literals, all the clauses are XORs of literals. E.g., an input might look like this:

\[(x_1 \oplus x_2 \oplus x_3 \oplus x_4) \land (\overline{x}_2 \oplus x_3) \land \cdots \land (\overline{x}_7 \oplus x_8 \oplus x_n),\]

where \(\oplus\) denotes XOR. As usual, the XOR-SAT problem is to determine if there is a truth assignment to the variables that satisfies the whole formula.

(a) (2 points.) Show that we can equivalently think of an XOR-SAT input as a *system (collection) of equations mod 2*; meaning a system where the variables are supposed to take values in \(\{0, 1\}\), and every equation is of the form

\[x_{i_1} + x_{i_2} + \cdots + x_{i_k} = c \pmod{2}.\]

Here \(c \in \{0, 1\}\), and the left-hand side is the sum of zero or more *distinct* variables. The equations may have different numbers of variables on the LHS, and different RHS’s.

(b) (2 points.) Suppose \(E_1\) and \(E_2\) are equations as above. Explain how \(E_1 + E_2\) can also be thought of as such an equation. Also, show that an assignment satisfies both \(E_1, E_2\) if and only if it satisfies both \(E_1, E_1 + E_2\).

(c) (2 points.) Given a system of equations as above, show how it can be transformed, in polynomial time, to an equivalent system in which \(x_1\) appears in at most one equation. (Here “equivalent” is in the sense of satisfiability: the transformed system is satisfiable if and only if the original system is satisfiable.)

(d) (1 point.) Suppose we are given a system of equations in which \(x_1\) appears in at most one equation — call it \(E_1\), if it exists. Show that in polynomial time we can transform the system into an equivalent one in which furthermore \(x_2\) appears in at most *two* equations, at most one of which is not \(E_1\). (Hint: Your proof can begin, “Ignoring \(E_1\) (if it exists), again...”)

(e) (3 points.) Write the words “Et cetera.” Now assume we have an (equivalent) system of equations in which \(x_1\) appears in at most one equation (call it \(E_1\)), \(x_2\) appears in at most two equations (call them \(E_1, E_2\)), \(x_3\) appears in at most three equations (call them \(E_1, E_2, E_3\)), ... , \(x_n\) appears in at most \(n\) equations (call them \(E_1, \ldots, E_n\)). (Each \(E_i\) might “not exist”.) Explain why the original system is unsatisfiable if the final system includes the equation “0 = 1” and why the original system is satisfiable otherwise. (For the latter: show how to actually find a satisfying assignment — the key phrase is “back-substitution”. If one of the \(E_i\)’s does not exist, simply add in the equation \(x_i = 0\) and show that nothing is harmed.)