Lectures 6: The Data Stream Model

David Woodruff
Carnegie Mellon University
Data Streams

• A stream is a sequence of data, that is too large to be stored in available memory

• Examples
 • Internet search logs
 • Network Traffic
 • Sensor networks
 • Scientific data streams (astronomical, genomics, physical simulations)
Streaming Model

- Stream of elements a_1, \ldots, a_i, \ldots each from an alphabet Σ and taking b bits to represent

- Single or small number of passes over the data

- Almost all algorithms are randomized and approximate
 - Usually necessary to achieve efficiency
 - Randomness is in the algorithm, not the input

- **Goals:** minimize space complexity (in bits), processing time
Example Streaming Problems

• Let \(a_{[1:t]} = <a_1, \ldots, a_t> \) be the first \(t \) elements of the stream

• Suppose \(a_1, \ldots, a_t \) are integers in \(\{-2^b + 1, -2^b + 2, \ldots, -1, 0, 1, 2, \ldots, 2^b-1\} \)
 • Example stream: 3, 1, 17, 4, -9, 32, 101, 3, -722, 3, 900, 4, 32

• How many bits do we need to maintain \(f(a_{[1:t]}) = \sum_{i=1}^{t} a_i \)?
 • Outputs on example: 3, 4, 21, 25, 16, 48, 149, 152, -570, -567, 333, 337, 379, ...
 • \(O(b + \log t) \)

• How many bits do we need to maintain \(f(a_{[1:t]}) = \max_{i=1}^{t} a_i \)?
 • Outputs on example: 3, 3, 17, 17, 17, 32, 101, 101, 101, 101, 900, 900, 900, ...
 • \(O(b) \) bits
Example Streaming Problems

• The median of all the numbers we’ve stored so far
 • Example stream: 3, 1, 17, 4, -9, 32, 101, 3, -722, 3, 900, 4, 32
 • Median: 3, 1, 3, 3, 3, 3, 4, 3, ...
 • This seems harder...

• The number of distinct elements we’ve seen so far?
 • Outputs on example: 1, 2, 3, 4, 5, 6, 7, 7, 8, 8, 9, 9, 9, ...

• The elements that have appeared at least an ϵ-fraction of the time?
 These are the ϵ-heavy hitters
 • Cover today
Many Applications

• Internet router may want to figure out which IP connections are heavy hitters, e.g., the ones that use more than .01% of your bandwidth

• Or maybe the router wants to know the median (or 90-th percentile) of the file sizes being transferred

• Hashing is a key technique
Finding ε-Heavy Hitters

• S_t is the multiset of items at time t, so $S_0 = \emptyset$, $S_1 = \{a_1\}$, \ldots, $S_i = \{a_1, \ldots, a_i\}$, $\text{count}_t(e) = \{i \in \{1, 2, \ldots, t\} \text{ such that } a_i = e\}$

• $e \in \Sigma$ is an ε-heavy hitter at time t if $\text{count}_t(e) > \epsilon \cdot t$

• Given $\epsilon > 0$, can we output the ε-heavy hitters?
 • Let’s output a set of size $\frac{1}{\epsilon}$ containing all the ε-heavy hitters

• Note: can output “false positives” but not allowed to output “false negatives”, i.e., not allowed to miss any heavy hitter, but could output non-heavy hitters
Finding ε-Heavy Hitters

- Example: $E, D, B, E, D_5, D, B, A, C, B_{10}, B, E, E, E, E_{15}, E$
 (the subscripts are just to help you count)

- At time 5, the element D is the only $1/3$-heavy hitter
- At time 11, both B and D are $1/3$-heavy hitters
- At time 15, there is no $1/3$-heavy hitter
- At time 16, only E is a $1/3$-heavy hitter

Can’t afford to keep counts of all items, so how to maintain a short summary to output the ε-heavy hitters?
Finding a Majority Element

• First find a .5-heavy hitter, that is, a majority element:
 memory ← empty and counter ← 0
 when element a_t arrives
 if (counter == 0)
 memory ← a_t and counter ← 1
 else
 if $a_t = memory$
 counter ++
 else
 counter --
 (discard a_t)
 • At end of the stream, return the element in memory
Memory = 3, Count = 1
Memory = 3, Count = 0
Memory = 2, Count = 1
Memory = 2, Count = 0
Memory = 1, Count = 1
Analysis of Finding a Majority Element

• If there is no majority element, we output a false positive, which is OK.

• If there is a majority element, we will output it. Why?

 • When we discard an element a_t, we throw away a different element.

 • Every time we throw away a copy of a majority element, we throw away another element, but majority element is more than half the total number of elements, so can’t throw away all of them.
Extending to ϵ-Heavy Hitters

Set $k = \lceil \frac{1}{\epsilon} \rceil - 1$

Array $T[1, \ldots, k]$, where each location can hold one element from Σ

Array $C[1, \ldots, k]$, where each location can hold a non-negative integer

$C[i] \leftarrow 0$ and $T[i] \leftarrow \bot$ for all i

If there is $j \in \{1, 2, \ldots, k\}$ such that $a_t = T[j]$, then $C[j] \leftarrow +$

Else if some counter $C[j] = 0$ then $T[j] \leftarrow a_t$ and $C[j] \leftarrow 1$

Else decrement all counters by 1 (and discard element a_t)

$est_t(e) = C[j]$ if $e == T[j]$, and $est_t(e) = 0$ otherwise
Analyzing Counts

• **Lemma:** \(0 \leq \text{count}_t(e) - \text{est}_t(e) \leq \frac{t}{k+1} \leq \epsilon \cdot t \)

• **Proof:** \(\text{count}_t(e) \geq \text{est}_t(e) \) since we never increase a counter for \(e \) unless we see \(e \)

If we don’t increase \(\text{est}_t(e) \) by 1 when we see an update to \(e \), we decrement \(k \) counters and discard the current update to \(e \)

So we drop \(k+1 \) distinct stream updates, but there are \(t \) total updates, so we won’t increase \(\text{est}_t(e) \) by 1, when we should, at most \(\frac{t}{k+1} \leq \epsilon \cdot t \) times
Heavy Hitters Guarantee

• At any time t, all ϵ-heavy hitters e are in the array T. Why?

• For an ϵ-heavy hitter e, we have $\text{count}_t(e) > \epsilon \cdot t$

• But $\text{est}_t(e) \geq \text{count}_t(e) - \epsilon \cdot t$

• So $\text{est}_t(e) > 0$, so e is in array T

• Space is $O(k \ (\log(\Sigma) + \log t)) = O(1/ \epsilon) \ (\log(\Sigma) + \log t)$ bits
Heavy Hitters with Deletions

• Suppose we can delete elements e that have already appeared

• Example: (add, A), (add, B), (add, A), (del, B), (del, A), (add, C)

• Multisets at different times
 $S_0 = \emptyset, S_1 = \{A\}, S_2 = \{A, B\}, S_3 = \{A, A, B\}, S_4 = \{A, A\}, S_5 = \{A\}, S_6 = \{A, C\}, ...$

• “active” set S_t has size $|S_t| = \sum_{e \in \Sigma} count_t(e)$ and can grow and shrink
Data Structure for Approximate Counts

- Query “What is \(\text{count}_t(e) \)?”, should output \(\text{est}_t(e) \) with:
 \[
 \Pr[|\text{est}_t(e) - \text{count}_t(e)| \leq \epsilon |S_t|] \geq 1 - \delta
 \]
- Want space close to our previous \(O(1/\epsilon) \) \((\log(\Sigma) + \log t)\) bits
- Let \(h: \Sigma \rightarrow \{0,1,2, ..., k-1\} \) be a hash function (will specify later)
- Maintain an array \(A[0, 1, ..., k-1] \) to store non-negative integers

 when update \(a_t \) arrives:
 - if \(a_t = (\text{add}, e) \) then \(A[h(e)] ++ \)
 - else \(a_t = (\text{del}, e) \), and \(A[h(e)] -- \)

 \(\text{est}_t(e) = A[h(e)] \)
Data Structure for Approximate Counts

• $A[h(e)] = \sum_{e' \in \Sigma} \text{count}_t(e') \cdot 1(h(e') = h(e))$, where $1(\text{condition})$ evaluates to 1 if the condition is true, and evaluates to 0 otherwise

• $A[h(e)] = \text{count}_t(e) + \sum_{e' \neq e} \text{count}_t(e') \cdot 1(h(e') = h(e))$,

• $\text{est}_t(e) - \text{count}_t(e) = \sum_{e' \neq e} \text{count}_t(e') \cdot 1(h(e') = h(e))$

• Since we have a small array A with k locations, there are likely many $e' \neq e$ with $h(e') = h(e)$, but can we bound the expected error?
Data Structure for Approximate Counts

• **Recall:** Family H of hash functions $h: U \rightarrow \{0, 1, ..., k-1\}$ is universal if for all $x \neq y$,

$$\Pr_{h \leftarrow H} [h(x) = h(y)] \leq \frac{1}{k}$$

• Gave a simple family where h can be specified using $O(\log |U|)$ bits. Here, $|U| = |\Sigma|$.

• $E[\text{est}_t(e) - \text{count}_t(e)] = E[\sum_{e' \neq e} \text{count}_t(e') \cdot 1(h(e') = h(e))]$

 $= \sum_{e' \neq e} \text{count}_t(e') \cdot E[1(h(e') = h(e))]$

 $= \sum_{e' \neq e} \text{count}_t(e') \cdot \Pr[h(e') = h(e)]$

 $\leq \sum_{e' \neq e} \text{count}_t(e') \cdot \left(\frac{1}{k}\right)$

 $= \frac{|S_t| - \text{count}_t(e)}{k} \leq \frac{|S_t|}{k}$

$k = 1/\epsilon$ makes this at most $\epsilon \cdot |S_t|$. Space is $O(\frac{1}{\epsilon})$ counters plus storing hash function.
High Probability Bounds for CountMin

• Have $0 \leq \text{est}_t(e) - \text{count}_t(e) \leq |S_t|/k$ in expectation from CountMin
 • With probability $1/2$, $\text{est}_t(e) - \text{count}_t(e) \leq 2|S_t|/k$ Why?

• Can we make the success probability $1-\delta$?
 • Independent repetition: pick m hash functions h_1, \ldots, h_m with $h_i: \Sigma \to \{0, 1, 2, \ldots, k - 1\}$ independently from H. Create array A_i for h_i
 when update a_t arrives:

 for each i from 1 to m

 if $a_t = (\text{add}, e)$ then $A_i[h_i(e)] ++$

 else $a_t = (\text{del}, e)$ and $A_i[h_i(e)] --$

High Probability Bounds and Overall Space

What is our new estimate of $\text{count}_t(e)$?

$$\text{best}_t(e) := \min_{i=1}^{m} A_i[h_i(e)].$$

- Each $A_i[h_i(e)]$ is an **overestimate** to $\text{count}_t(e)$
- By independence, $\Pr[\text{for all } i, A_i[h_i(e)] \geq 2|S_t|/k] \leq \left(\frac{1}{2}\right)^m$
- For $k = \frac{2}{\epsilon}$ and $m = \log_2 \left(\frac{1}{\delta}\right)$, the error is at most $\epsilon|S_t|$ with probability $1-\delta$
- Space: $m \cdot k = O\left(\frac{\log(1/\delta)}{\epsilon}\right)$ counters each of $O(\log t)$ bits
 $$m \cdot O(\log |\Sigma|) = O\left(\log \left(\frac{1}{\delta}\right) \log |\Sigma|\right)$$ bits to store hash functions
\textbf{\(\epsilon\)-Heavy Hitters}

- Our new estimate \(\text{best}_t(e)\) satisfies
 \[\Pr[|\text{best}_t(e) - \text{count}_t(e)| \leq \epsilon |S_t|] \geq 1 - \delta \]
 and uses \(O\left(\frac{\log(\frac{1}{\delta}) \log t}{\epsilon} + \log \left(\frac{1}{\delta}\right) \log |\Sigma|\right)\) bits of space

- What if we want with probability 9/10, simultaneously for all \(e\),
 \(|\text{best}_t(e) - \text{count}_t(e)| \leq \epsilon |S_t|\)?

- Set \(\delta = \frac{1}{10|\Sigma|}\) and apply a union bound over all \(e \in \Sigma\)