Hashing

- Universal hashing
- Perfect hashing
Maintaining a Dictionary

• Let U be a universe of “keys”
 • U could be all strings of ASCII characters of length at most 80

• Let S be a subset of U, which is a small “dictionary”
 • S could be all English words

• Support operations to maintain the dictionary
 • Insert(x): add the key x to S
 • Query(x): is the key x in S?
 • Delete(x): remove the key x from S
Dictionary Models

• **Static:** don’t support insert and delete operations, just optimize for fast query operations
 • For example, the English dictionary does not change much
 • Could use a sorted array with binary search

• **Insertion-only:** just support insert and query operations

• **Dynamic:** support insert, delete, and query operations
 • Could use a balanced search tree (AVL trees) to get $O(\log |S|)$ time per operation

• Hashing is an alternative approach, often the fastest and most convenient
Formal Hashing Setup

• Universe U is very large
 • E.g., set of ASCII strings of length 80 is 128^{80}

• Care about a small subset $S \subseteq U$. Let $N = |S|$.
 • S could be the names of all students in this class

• Our data structure is an array A of size M and a “hash function” $h: U \rightarrow \{0, 1, \ldots, M-1\}$.
 • Typically $M \ll U$, so can’t just store each key x in $A[x]$.
 • Insert(x) will try to place key x in $A[h(x)]$

• But what if $h(x) = h(y)$ for $x \neq y$? We let each entry of A be a linked list.
 • To insert an element x into $A[h(x)]$, insert it at the top of the list.
 • Hope linked lists are small
How to Choose the Hash Function h?

- Want it to be unlikely that $h(x) = h(y)$ for different keys x and y
- Want our array size M to be $O(N)$, where N is number of keys
- Want to quickly compute $h(x)$ given x
 - We will treat this computation as $O(1)$ time

- How long do Query(x) and Delete(x) take?
 - $O(\text{length of list } A[h(x)])$ time

- How long does Insert(x) take?
 - $O(1)$ time no matter what

- How long can the lists $A[h(x)]$ be?
Bad Sets Exist for any Hash Function

• **Claim:** For any hash function \(h: U \rightarrow \{0, 1, 2, ..., M-1\} \), if \(|U| \geq (N - 1)M + 1 \), there is a set \(S \) of \(N \) elements of \(U \) that all hash to the same location.

• **Proof:** If every location had at most \(N-1 \) elements of \(U \) hashing to it, we would have \(|U| \leq (N - 1)M \).

• There’s no good hash function \(h \) that works for every \(S \). Thoughts?

• **Universal Hashing:** *Randomly choose \(h \)!
 • Show for *any* sequence of insert, query, and delete operations, the expected number of operations, over a random \(h \), is small.
Universal Hashing

• **Definition:** A set H of hash functions h, where each h in H maps $U \rightarrow \{0, 1, 2, \ldots, M-1\}$ is universal if for all $x \neq y$,

$$\Pr_{h \leftarrow H}[h(x) = h(y)] \leq \frac{1}{M}$$

• The condition holds for every $x \neq y$, and the randomness is only over the choice of h from H

• Equivalently, for every $x \neq y$, we have:

$$\frac{|\{h \in H | h(x) = h(y)\}|}{|H|} \leq \frac{1}{M}$$
Universal Hashing Examples

Example 1: The following three hash families with hash functions mapping the set \(\{a, b\} \) to \(\{0, 1\} \) are universal, because at most \(1/M \) of the hash functions in them cause \(a \) and \(b \) to collide, were \(M = |\{0, 1\}| \).

<table>
<thead>
<tr>
<th>(a)</th>
<th>(b)</th>
<th>(a)</th>
<th>(b)</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h_1)</td>
<td>0</td>
<td>0</td>
<td>(h_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(h_2)</td>
<td>0</td>
<td>1</td>
<td>(h_2)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(h_3)</td>
<td>0</td>
<td>1</td>
<td>(h_3)</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Examples that are Not Universal

- Note that a and b collide with probability more than $1/M = 1/2$
Universal Hashing Example

- The following hash function is universal with $M = |\{0,1,2\}|$

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>h_1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>h_2</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>h_3</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Using Universal Hashing

- **Theorem**: If H is universal, then for any set $S \subseteq U$ with $|S| = N$, for any $x \in S$, if we choose h at random from H, the expected number of collisions between x and other elements in S is less than N/M.

 - **Proof**: For $y \in S$ with $y \neq x$, let $C_{xy} = 1$ if $h(x) = h(y)$, otherwise $C_{xy} = 0$.

 Let $C_x = \sum_{y \neq x} C_{xy}$ be the total number of collisions with x.

 $E[C_{xy}] = \Pr[h(x) = h(y)] \leq \frac{1}{M}$

 By linearity of expectation, $E[C_x] = \sum_{y \neq x} E[C_{xy}] \leq \frac{N-1}{M}$.
Using Universal Hashing

- **Corollary:** If H is universal, for any sequence of L insert, query, and delete operations in which there are at most M keys in the data structure at any time, the expected cost of the L operations for a random $h \in H$ is $O(L)$
 - Assumes the time to compute h is $O(1)$

- **Proof:** For any operation in the sequence, its expected cost is $O(1)$ by the last theorem, so the expected total cost is $O(L)$ by linearity of expectation
But how to Construct a Universal Hash Family?

• Suppose $|U| = 2^u$ and $M = 2^m$
• Let A be a random $m \times u$ binary matrix, and $h(x) = Ax \text{ mod } 2$

• Claim: for $x \neq y$, $\Pr[h(x) = h(y)] = \frac{1}{M} = \frac{1}{2^m}$
But how to Construct a Universal Hash Family?

• Claim: For $x \neq y$, $\Pr[h(x) = h(y)] = \frac{1}{M} = \frac{1}{2^m}$

• Proof: $A \cdot x \mod 2 = \sum_i A_i x_i \mod 2$, where A_i is the i-th column of A

 If $h(x) = h(y)$, then $Ax = Ay \mod 2$, so $A(x-y) = 0 \mod 2$

 If $x \neq y$, there exists an i^* for which $x_{i^*} \neq y_{i^*}$

 Fix A_j for all $j \neq i^*$, which fixes $b = \sum_{j \neq i^*} A_j (x_j - y_j) \mod 2$

 $A(x-y) = 0 \mod 2$ if and only if $A_{i^*} = b$

 $\Pr[A_{i^*} = b] = \frac{1}{2^m} = \frac{1}{M}$

So $h(x) = Ax \mod 2$ is universal
k-wise Independent Families

• **Definition:** A hash function family H is *k-universal* if for every set of k distinct keys x_1, \ldots, x_k and every set of k values $v_1, \ldots, v_k \in \{0, 1, \ldots, M - 1\}$,

$$\Pr[h(x_1) = v_1 \text{ AND } h(x_2) = v_2 \text{ AND } \ldots \text{ AND } h(x_k) = v_k] = \frac{1}{M^k}$$

• If H is 2-universal, then it is universal. *Why?*

• $h(x) = Ax \mod 2$ for a random binary A is not 2-universal. *Why?*

• Exercise: Show $Ax + b \mod 2$ is 2-universal, where A in $\{0,1\}^{m \times u}$ and $b \in \{0,1\}^m$ are chosen independently and uniformly at random
More Universal Hashing

• Given a key x, suppose $x = [x_1, \ldots, x_k]$ where each $x_i \in \{0, 1, \ldots, M - 1\}$

• Suppose M is prime

• Choose random $r_1, \ldots, r_k \in \{0, 1, \ldots, M - 1\}$ and define
 $h(x) = r_1x_1 + r_2x_2 + \ldots + r_kx_k \mod M$

• **Claim**: the family of such hash functions is universal, that is,
 $\Pr[h(x) = h(y)] \leq \frac{1}{M}$ for all distinct x and y
More Efficient Universal Hashing

• **Claim:** the family of such hash functions is universal, that is, \(\Pr[h(x) = h(y)] \leq \frac{1}{M} \) for all \(x \neq y \)

• **Proof:** Since \(x \neq y \), there is an \(i^* \) for which \(x_{i^*} \neq y_{i^*} \)

 Let \(h'(x) = \sum_{j \neq i^*} r_j x_j \), and \(h(x) = h'(x) + r_{i^*} x_{i^*} \mod M \)

 If \(h(x) = h(y) \), then \(h'(x) + r_{i^*} x_{i^*} = h'(y) + r_{i^*} y_{i^*} \mod M \)

 So \(r_{i^*}(x_{i^*} - y_{i^*}) = h'(y) - h'(x) \mod M \), or \(r_{i^*} = \frac{h'(y) - h'(x)}{x_{i^*} - y_{i^*}} \mod M \)

 This happens with probability exactly \(1/M \)
Perfect Hashing

- If we fix the dictionary S of size N, can we find a hash function h so that all query(x) operations take constant time?

- **Claim:** If H is universal and $M = N^2$, then $\Pr_{h \leftarrow H} [\text{no collisions in } S] \geq \frac{1}{2}$

- **Proof:** How many pairs $\{x, y\}$ of distinct x, y in S are there?

 Answer: $N(N-1)/2$

 For each pair, the probability of a collision is at most $1/M$

 $\Pr[\text{exists a collision}] \leq (N(N-1)/2)/M \leq \frac{1}{2}$

Just try a random h and check if there are any collisions

Problem: our hash table has $M = N^2$ space! How can we get $O(N)$ space?
Perfect Hashing in O(N) Space – 2 Level Scheme

• Choose a hash function \(h: U \rightarrow \{1, 2, \ldots, N\} \) from a universal family

• Let \(L_i \) be the number of items \(x \) in \(S \) for which \(h(x) = i \)

• Choose \(N \) “second-level” hash functions \(h_1, h_2, \ldots, h_N \), where \(h_i: U \rightarrow \{1, \ldots, L_i^2\} \)

By previous analysis, can choose hash functions \(h_1, h_2, \ldots, h_N \) so that there are no collisions, so \(O(1) \) time

Hash table size is \(\sum_{i=1}^{n} L_i^2 \)
How big is that??
Perfect Hashing in $O(N)$ Space – 2 Level Scheme

- **Theorem**: If we pick h from a universal family H, then
 \[
 \Pr_{h \leftarrow H} \left[\sum_{i=1}^{N} L_i^2 > 4N \right] \leq \frac{1}{2}
 \]

- **Proof**: It suffices to show $E[\sum_i L_i^2] < 2N$ and apply Markov’s inequality.
 Let $C_{x,y} = 1$ if $h(x) = h(y)$. By counting collisions on both sides, $\sum_i L_i^2 = \sum_{x,y} C_{x,y}$
 - If $x = y$, then $C_{x,y} = 1$.
 - If $x \neq y$, then $E[C_{x,y}] = \Pr[C_{x,y} = 1] \leq \frac{1}{N}$
 \[
 E[\sum_i L_i^2] = \sum_{x,y} E[C_{x,y}] = N + \sum_{x \neq y} E[C_{x,y}] \leq N + N(N-1)/N < 2N
 \]

 So choose a random h in H, check if $\sum_{i=1}^{N} L_i^2 \leq 4N$, and if so, then choose h_1, \ldots, h_N