Lecture 23: Graph Compression

David Woodruff
Carnegie Mellon University
Outline

• Motivating Questions

• Spanners
 • Multiplicative
 • Additive
Diameter

• You have an unweighted, undirected graph $G = (V, E)$ on n vertices

• Diameter is $D_G = \max_{u,v \in V} d_G(u, v)$, where $d_G(u, v)$ is shortest path distance

• How to compute D_G?

• All pairs shortest path algorithm such as Floyd-Warshall
 • Time is $O(|E| n)$ which could be $O(n^3)$
 • Can we compute or approximate D_G faster?
Shortest Path Queries

- $G = (V, E)$ is an unweighted, undirected graph on n vertices
- Want to answer shortest path queries: what is $d_G(u, v)$?
- $|E|$ can be $\Theta(n^2)$, so want to “compress” G to fit in memory, but still want to answer shortest path queries
- Replace G with a subgraph $H = (V, E')$
 - Store H instead of G
 - Given query $d_G(u, v)$, respond with $d_H(u, v)$
- Suppose $G = (V, E)$ is a clique
 - If $\{u, v\}$ not in H, what is $d_G(u, v)$ and what is $d_H(u, v)$?
- Can we find a small subgraph H to approximate $d_G(u, v)$ for all u, v?
Outline

• Motivating Questions

• **Spanners**
 • Multiplicative
 • Additive
Spanners

• $G = (V, E)$ is undirected, unweighted graph on n vertices

• $d_G(u, v)$ is shortest path distance from u to v

• A (k, b)-spanner of G is a subgraph $H = (V, E')$ such that for all u, v in V
 \[d_G(u, v) \leq d_H(u, v) \leq k \cdot d_G(u, v) + b \]

• If $b = 0$, H is a multiplicative spanner

• If $k = 1$, H is an additive spanner

• Do there exist (k, b)-spanners H with small $|E'|$?
Application of Spanners

• Shortest path query $d_G(u, v)$
 - Replace G with a (k, b)-spanner H with $|E'|$ edges
 - Output $d_H(u, v)$
 - Approximation: $d_G(u, v) \leq d_H(u, v) \leq k \cdot d_G(u, v) + b$
 - Space: $O(|E'| + n)$ instead of $O(|E| + n)$
 - Time: $O(|E'| + n)$ instead of $O(|E| + n)$

• Approximating diameter D_G
 - Replace G with a (k, b)-spanner H with $|E'|$ edges
 - Output diameter D_H of H
 - Approximation: $D_G \leq D_H \leq k \cdot D_G + b$
 - Time: $O(n|E'|)$ instead of $O(n|E|)$

• Faster if $|E'| \ll |E|$, but have to account for the time to create H
Outline

• Motivating Questions

• Spanners
 • Multiplicative
 • Additive
Multiplicative Spanners

• A \((k, b)\)-spanner of \(G\) is a subgraph \(H = (V, E')\) such that for all \(u, v\) in \(V\)
\[d_G(u, v) \leq d_H(u, v) \leq k \cdot d_G(u, v) + b\]

• If \(b = 0\), then \(d_G(u, v) \leq d_H(u, v) \leq k \cdot d_G(u, v)\) for all \(u, v\) in \(V\)
 • \(H = (V, E')\) is a \(k\)-multiplicative spanner
 • *How small can \(|E'|\) be?*

• If \(d_G(u, v) = 1\), then \(d_H(u, v) \leq k\)

• Conversely, if \(d_H(u, v) \leq k\) for all *edges* \(\{u, v\}\) of \(G\), then for any vertices \(u', v' \in V\),
\[d_H(u', v') \leq k \cdot d_G(u', v')\]

• To construct \(H\), just need for all edges \(\{u, v\}\) in \(E\), \(d_H(u, v) \leq k\)
Greedy Algorithm for Multiplicative Spanners

• Let’s build $H = (V, E')$ by walking through the edges of G

• Initialize $H = (V, \emptyset)$
 • For each edge e in G
 • If ______________________, then include e in H

• That’s the algorithm! What should ______________________ be?
 • “If e doesn’t form a cycle of length at most $k+1$ with the edges you’ve already included”

• Why is this correct?
 • For each edge not included, there’s a path of length at most k between its endpoints

• How many edges does H have?
Bounding the Number of Edges in H

• H doesn’t have a cycle of length at most $k+1$. *Why?*

• Minimum cycle length is called the girth

• What’s the maximum number of edges in a graph with girth at least $k+2$?
 • *What if $k = 2$?*
 • A complete bipartite graph has $\Omega(n^2)$ edges, and girth 4
 • *What if $k = 3$?*
 • At most $O(n^{\frac{3}{2}})$ edges!
 • For $k=2t$ or $k=2t-1$ for an integer t, at most $O(n^{1+\frac{1}{t}})$ edges, so H is tiny!
Bounding the Number of Edges in H

• **Theorem:** for $k=2t$ or $k=2t-1$, a graph with girth at least $k+2$ has $O(n^{1+\frac{1}{t}})$ edges

• **Lemma:** let $\bar{d} = 2m/n$ be the average degree in a graph G with m edges and n nodes. There is a non-empty subgraph G' of G with minimum degree $\bar{d}/2$

• **Proof:** Initialize $V_0 = V$ and $E_0 = E$
 • $i = 0$
 • While there is a vertex v of degree at most $|E_i|/|V_i|$,
 • $i \leftarrow i + 1$
 • $V_i \leftarrow V_{i-1} \setminus \{v\}$
 • $E_i \leftarrow E_{i-1} \setminus \{\{v, w\} \text{ for all neighbors } w \text{ of } v\}$
 • Output $G' = (V_i, E_i)$
 • G' is non-empty because $|E_i|/|V_i| \geq |E_{i-1}|/|V_{i-1}| \geq \cdots \geq |E|/|V| = m/n > 0$

For $t \leq \frac{x}{y}$ we have:

$$\frac{x-t}{y-1} \geq \frac{x}{y} = \frac{x \left(1 - \frac{1}{y} \right)}{y \left(1 - \frac{1}{y} \right)} = \frac{x}{y}$$
Bounding the Number of Edges in H

- **Theorem:** for $k = 2t$ or $k=2t-1$, a graph with girth at least $k+2$ has $O(n^{1+\frac{1}{t}})$ edges

- **Proof:**
 - By lemma, a graph G has a non-empty subgraph G' with min degree $\frac{\bar{d}}{2}$
 - Grow a breadth-first-search (BFS) tree from a node $v \in G'$
 - G' has girth $k+2$
 - At level t in the BFS tree, there are at least $\left(\frac{\bar{d}}{2} - 1\right)^t$ distinct nodes
 - $\left(\frac{\bar{d}}{2} - 1\right)^t \leq n$, so $\left(\frac{m}{n} - 1\right)^t \leq n$, and solving gives $m \leq n + n^{1+\frac{1}{t}}$
Can we do Better?

• **Girth conjecture:** for \(k = 2t \) or \(k=2t-1 \), there are graphs with girth \(k+2 \) and \(\Omega \left(n^{1+\frac{1}{t}} \right) \) edges

• Implies any \(k \)-multiplicative spanner has \(\Omega \left(n^{1+\frac{1}{t}} \right) \) edges. *Why?*

• If we delete any edge \(\{u,v\} \) in \(G \), the distance from \(u \) to \(v \) increases from 1 to \(k+1 \)

• Only \(k \)-spanner of \(G \) is \(G \) itself

• Girth conjecture true for \(k = 1, 2, 3, 5 \)
Where are We?

• Can find a (2t-1)-spanner with $O(n^{1+\frac{1}{t}})$ edges

• Can approximate $d_G(u, v)$ for any u,v up to a multiplicative factor $2k-1$

• Don’t store G, just store H. Only $O(|E'|) = O(n^{1+\frac{1}{t}})$ instead of $O(n^2)$ edges

• Time to compute $d_H(u, v)$, given H, is $O(|E'|) = O(n^{1+\frac{1}{t}})$
 • Faster than the $O(n^2)$ time to query a dense graph G
 • Greedy algorithm to find H is slow, but can find H in $O(|E|+n)$ time
Outline

• Motivating Questions

• Spanners
 • Multiplicative
 • Additive
Additive Spanners

- A \((k, b)\)-spanner of \(G\) is a subgraph \(H = (V, E')\) such that for all \(u, v\) in \(V\)
 \[d_G(u, v) \leq d_H(u, v) \leq k \cdot d_G(u, v) + b\]

- If \(k = 1\), then
 \[d_G(u, v) \leq d_H(u, v) \leq d_G(u, v) + b\] for all \(u, v\) in \(V\)
 - \(H = (V, E')\) is a \(b\)-additive spanner
 - *How small can \(|E'|\) be?*

- For multiplicative spanners, sufficient to show for all edges \(\{u,v\}\) in \(G\), \(d_H(u, v) \leq k\)
 - Insufficient for additive spanners to show \(d_H(u, v) \leq b + 1\) for all edges \(\{u,v\}\) in \(G\)

- *Would you believe:* there is a 2-additive spanner with \(O(n^{3/2} \log n)\) edges?
Additive Spanner Algorithm

- The algorithm has two parts

1. Include in H all edges incident to vertices of degree at most \sqrt{n}
 - at most $n^{3/2}$ edges (why?)

2. Randomly sample a set S of $2\sqrt{n} \cdot \ln n$ vertices and include a BFS tree rooted at each vertex in S, in H
 - at most $2n^{3/2}\ln n$ edges (why?)

H has $O(n^{3/2} \log n)$ edges. Why is it a 2-additive spanner?
Path Hitting

- Consider a shortest path P from u to v in G
- If all nodes on P have degree \(\leq \sqrt{n} \), then all edges in P are included in the spanner H
- Otherwise consider the first edge \{c,d\} in P, but not in H
 - c and d have degree at least \(\sqrt{n} \)
- Since we randomly sample a set S of size \(2\sqrt{n} \cdot \ln n \), with high probability, we sample a neighbor e of c (probability we don’t sample a neighbor of c at most \(\left(1 - \frac{\sqrt{n}}{n}\right)^{2\sqrt{n} \ln n} \leq \frac{1}{n^2} \)
For each of our sampled vertices in S, we grew a BFS tree

Let T_e be the BFS tree rooted at e included in H

Let Q be the path from e to v in T_e

Consider the path P' in H which follows P from u to c, then traverses edge $\{c, e\}$, then follows Q to v. How long is P'?
• Consider the path P' in H which follows P from u to c, then traverses edge $\{c, e\}$, then follows Q to v. How long is P'?

• Q is a shortest path from e to v in G!

• $d_Q(e, v) \leq 1 + d_P(c, v)$

• $d_{P'}(u, v) = d_P(u, c) + 1 + d_Q(e, v) \leq d_P(u, c) + d_P(c, v) + 2 = d_P(u, v) + 2$
Additive Spanner Notes

• Can find a 2-additive spanner with $O(n^{3/2} \log n)$ edges
 • Can get $O(n^{3/2})$ edges

• Can find a 4-additive spanner with $n^{7/5} \text{poly}(\log n)$ edges

• Can find a 6-additive spanner with $O(n^{4/3})$ edges

• For any constant $C > 0$, any C-additive spanner requires $\Omega(n^{4/3})$ edges