Lecture 2: Concrete Models and Tight Upper and Lower Bounds

David Woodruff
Carnegie Mellon University
Theme: Tight Upper and Lower Bounds

• Number of comparisons to sort an array

• Number of exchanges to sort an array

• Number of comparisons needed to find the largest and second-largest elements in an array

• Number of probes into a graph needed to determine if the graph is connected
Formal Model

• Look at models which specify exactly which operations may be performed on the input, and what they cost
 • E.g., performing a comparison, or swapping a pair of elements

• An upper bound of $f(n)$ means the algorithm takes at most $f(n)$ steps on any input of size n

• A lower bound of $g(n)$ means for any algorithm there exists an input for which the algorithm takes at least $g(n)$ steps on that input
Sorting in the Comparison Model

- In the comparison model, we have n items in some initial order
 - An algorithm may compare two items (asking is $a_i > a_j$?) at a cost of 1
 - Moving the items is free

- No other operations allowed, such as XORing, hashing, etc.

- Sorting: given an array $a = [a_1, \ldots, a_n]$, output a permutation π so that $[a_{\pi(1)}, \ldots, a_{\pi(n)}]$ in which the elements are in increasing order
Sorting Lower Bound

• **Theorem:** Any deterministic comparison-based sorting algorithm must perform at least $\lg(n!)$ comparisons to sort n elements in the worst case.

• I.e., for any sorting algorithm A and $n \geq 2$, there is an input I of size n so that A makes $\geq \lg(n!) = \Omega(n \log n)$ comparisons to sort I.

• Need to rule out any possible algorithm.

• Proof is information-theoretic.
Sorting Lower Bound

Proof: Suppose there is a problem with M possible outputs
- For sorting $M = n!$ since for each possible output permutation π, there is an input for which the output is π

- Suppose for each possible output, there is an input for which that output is the only correct answer
 - For sorting there are inputs for which π is the only correct answer

- Then there is a lower bound of $\lg M$
 - Consider a set of inputs in 1-to-1 correspondence with the M possible outputs
 - Algorithm needs to find out which of the M inputs we have
 - There’s a path removing at most half of the possible inputs at each node
Sorting Lower Bound

• Information-theoretic: need $\log(n!)$ bits of information about the input before we can correctly decide on the output

• $\log(n!) = \log(n) + \log(n - 1) + \log(n - 2) + ... + \log(1) < n \log n$

• $\log(n!) = \log(n) + \log(n - 1) + \log(n - 2) + ... + \log(1) > \left(\frac{n}{2}\right) \log \left(\frac{n}{2}\right) = \Omega(n \log n)$

• $n! \in [\left(\frac{n}{e}\right)^n, n^n]$, so $n \log n - n \log e < \log(n!) < n \log n$
 $n \log n - 1.443n < \log(n!) < n \log n$

• $\log(n!) = (n \log n) (1 - \mathcal{o}(1))$
Sorting Upper Bounds

• Suppose for simplicity n is a power of 2

• Binary insertion sort: using binary search to insert each new element, the number of comparisons is $\sum_{k=2}^{n} \lfloor \log k \rfloor \leq n \log n$
 • Note: may need to move items around a lot, but only counting comparisons

• Mergesort: merging two sorted lists of n/2 elements requires at most n-1 comparisons
 • Unrolling the recurrence, total number of comparisons is
 $$(n - 1) + 2 \left(\frac{n}{2} - 1 \right) + \ldots + \frac{n}{2} (2 - 1) = n \log n - (n - 1) < n \log n$$
Selection in the Comparison Model

• How many comparisons are necessary and sufficient to find the maximum of n elements in the comparison model?

• **Claim:** n-1 comparisons are sufficient
 • Proof: scan from left to right, keep track of the largest element so far

• For lower bounds, what does our earlier information-theoretic argument give?
 • Only $\Omega(\log n)$, which is too weak

• Also, we have to look at all elements, otherwise we may have not looked at the largest, but that can be done with n/2 comparisons, also not tight
Lower Bound for Finding the Maximum

- **Claim:** n-1 comparisons are needed in the worst-case to find the maximum of n elements

- **Proof:** suppose A is an algorithm which finds the maximum of n distinct elements using fewer than n-1 comparisons
 - Construct a graph G in which we join two elements by an edge if they are compared by A
 - G has at least 2 connected components C_1 and C_2
 - Suppose A outputs element u as the maximum, and $u \in C_1$
 - Add a large positive number to each element in C_2
 - Does not change any of the comparisons made by A, so will still output u
 - But now u is not the maximum, so A is incorrect
Lower Bound for Finding the Maximum

- **Recap**: upper and lower bounds match at n-1

- Argument different from information-theoretic bound for sorting

- Instead,
 - if algorithm makes too few comparisons on some input In and outputs Out,
 - find another input In’ where the algorithm makes the same comparisons and also outputs Out,
 - but Out is not a correct output for In’
An Adversary Argument

• If algorithm makes “too few” comparisons, fool it into giving an incorrect answer

• Any deterministic algorithm sorting 3 elements requires at least 3 comparisons
 • If < 2 comparisons, some element not looked at and the algorithm is incorrect
 • After first comparison, 3 elements are w, l, and z, the winner and loser of the
 first comparison, as well as the uninvolved item
 • If the second query is between w and z, say
 • w is larger
 • If the second query is between l and z, say
 • l is smaller
 • Algorithm needs one more comparison for correctness

• **Goal:** answer comparisons so that (a) answers consistent with some input In, (b) answers make the algorithm perform “many” comparisons
First and Second Largest of n Elements

• How many comparisons are necessary (lower bound) and sufficient (upper bound) to find the first and second largest of n distinct elements?

• **Claim:** n-1 comparisons are needed in the worst-case

• **Proof:** need to at least find the maximum
What about Upper Bounds?

• **Claim:** 2n-3 comparisons are sufficient to find the first and second-largest of n elements

• **Proof:** find the largest using n-1 comparisons, then find the largest of the remainder using n-2 comparisons, so 2n-3 total

• Upper bound is 2n-3, and lower bound n-1, both are Θ(n) but can we get tight bounds?
Second Largest of n Elements Upper Bound

• **Claim:** \(n + \lg n - 2 \) comparisons are sufficient to find the first and second-largest of \(n \) elements

• **Proof:** find the maximum element using \(n-1 \) comparisons by grouping elements into pairs, finding the maximum in each pair, and recursing

• What can we say about the second maximum?
 • Must have been directly compared to the maximum and lost, so \(\lg(n) - 1 \) additional comparisons suffice. Kislitsyn (1964) shows this is optimal
Sorting in the Exchange Model

• Consider a shelf containing n unordered books to be arranged alphabetically. How many swaps do we need to order them?

• In the exchange model, you have n items and the only operation allowed on the items is to swap a pair of them at a cost of 1 step.

 • All other work is free, e.g., the items can be examined and compared.

• How many exchanges are necessary and sufficient?
Sorting in the Exchange Model

• **Claim:** n-1 exchanges is sufficient

• **Proof:** here’s an algorithm:
 • In first step, swap the smallest item with the item in the first location
 • In second step, swap the second smallest item with the item in the second location
 • In k-th step, swap the k-th smallest item with the item in the k-th location
 • If no swap is necessary, just skip a given step
 • No swap ever undoes our previous work
 • At the end, the last item must already be in the correct location
Lower Bound for Sorting in Exchange Model

- **Claim:** $n-1$ exchanges are necessary in the worst case.
- **Proof:** create a directed graph in which the edge (i,j) means the book in location i must end up in location j.

![Graph](image)

- **Graph is a set of cycles**
 - Indegree and Outdegree of each node is 1.
Lower Bound for Sorting in Exchange Model

• What is the effect of exchanging any two elements in the same cycle?
 • Suppose we have edges \((i_1, j_1)\) and \((i_2, j_2)\) and swap elements in locations \(i_1\) and \(i_2\)
 • This replaces these edges with \((i_2, j_1)\) and \((i_1, j_2)\) since now the item in position \(i_2\)
 need to go to \(j_1\) and item in position \(i_1\) need to go to \(j_2\)
 • Since \(i_1\) and \(i_2\) in the same cycle, now we get two disjoint cycles
Lower Bound for Sorting in Exchange Model

• What is the effect of exchanging any two elements in different cycles?
 • If we swap elements i_1 and i_2 in different cycles, similar argument shows this merges two cycles into one cycle.
Lower Bound for Sorting in Exchange Model

- What is the effect of exchanging any two elements in the same cycle?
 - Get two disjoint cycles
- What is the effect of exchanging any two elements in different cycles?
 - Merges two cycles into one cycle
- How many cycles are in the final sorted array?
 - n cycles
- Suppose we begin with an array $[n, 1, 2, ..., n-1]$ with one big cycle
- Each step increases the number of cycles by at most 1, so need $n-1$ steps
Query Models and Evasiveness

- Let G be the adjacency matrix of an n-node graph
 - $G[i,j] = 1$ if there is an edge between i and j, else $G[i,j] = 0$
- In 1 step, we can query any element of G. All other computation is free
- How many queries do we need to tell if G is connected?
 - **Claim**: $n(n-1)/2$ queries suffice
 - **Proof**: Just query every pair $\{i,j\}$ to learn G, then check if G is connected

- **What about lower bounds?**
Connectivity is an Evasive Graph Property

• **Theorem:** \(n(n-1)/2 \) queries are necessary to determine connectivity

• **Proof:** adversary strategy: given a query \(G[u,v] \), answer 0 *unless* that would cause the graph to become disconnected

• **Invariant:** for any unasked pair \{u,v\}, the graph revealed so far has no path from u to v

• **Reason:** consider the last edge \{u’,v’\} revealed on that path. Could have answered 0 and kept same connectivity by having edge \{u,v\} be present
Connectivity is an Evasive Graph Property

- **Theorem**: \(\frac{n(n-1)}{2} \) queries are necessary to determine connectivity.
- **Proof**: adversary strategy: given a query \(G[u,v] \), answer 0 *unless* that would cause the graph to become disconnected.
- **Invariant**: for any unasked pair \(\{u,v\} \), the graph revealed so far has no path from \(u \) to \(v \).
- Suppose there is some unasked pair \(\{u,v\} \) by the algorithm:
 - If algorithm says “connected”, we place all 0s on unasked pairs.
 - If algorithm says “disconnected”, we place all 1s on unasked pairs.
- So algorithm needs to query every pair.