Outline

• Another linear programming example – l1 regression

• Seidel’s 2-dimensional linear programming algorithm

• Ellipsoid algorithm
L1 Regression

• Input: n x d matrix A with n larger than d, and n x 1 vector b
• Find x with Ax = b
• Unlikely an x exists, so instead compute \(\min_x \sum_{i=1,...,n} |A_i \cdot x - b_i| \)
• Solve with linear programming? How to handle the absolute values?
• Create variables \(s_i, t_i \) for \(i = 1, \ldots, n \) with \(s_i \geq 0 \) and \(t_i \geq 0 \)
 • Also have variables \(x_1, \ldots, x_d \)
• Add constraints \(A_i \cdot x - b_i = s_i - t_i \) for \(i = 1, \ldots, n \)
• What should the objective function be?
• \(\min \sum_{i=1,...,n} s_i + t_i \)
Seidel’s 2-Dimensional Algorithm

- Variables x_1, x_2
- Constraints $a_1 \cdot x \leq b_1, \ldots, a_m \cdot x \leq b_m$
- Maximize $c \cdot x$
- Start by making sure the program has bounded objective function value
What if the LP is unbounded?

- Add constraints \(-M \leq x_1 \leq M\) and \(-M \leq x_2 \leq M\) for a large value \(M\)

- How large should \(M\) be?

- Maximum, if it were unbounded, occurs at the intersection of two constraints
 \[ax_1 + bx_2 = c \] and \[ex_1 + fx_2 = d \]

- \[\begin{bmatrix} a & b \\ e & f \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} c \\ d \end{bmatrix} \]

- If \(a, b, e, f, c, d\) can be specified with \(L\) bits, can show \(|x_1|, |x_2|\) are \(2^{O(L)}\)

Can evaluate the objective function on each of the 4 corners of the box to find two constraints \(c_1, c_2\) which give the maximum
What Convexity Tells Us

• Maximizing a linear function over the feasible region finds a tangent point

• What’s a super naïve $O(m^3)$ time algorithm?

• Find the intersection of each pair of constraints, compute its objective function value, and make sure this point is feasible for all constraints

• What’s a less naïve $O(m^2)$ time algorithm?
An $O(m^2)$ Time Algorithm

• Order the constraints $a_1 \cdot x \leq b_1, \ldots, a_{m-2} \cdot x \leq b_{m-1}, c_1, c_2$
• Recursively find optimum point x^* of $a_2 \cdot x \leq b_2, \ldots, a_{m-2} \cdot x \leq b_{m-2}, c_1, c_2$
• If $a_1 x^* \leq b_1$, then x^* is overall optimum
• Otherwise, new optimum intersects the line $a_1 x^* = b_1$
• Need to solve a 1-dimensional problem
1-Dimensional Problem

- Takes $O(m)$ time to solve
An \(O(m^2) \) Time Algorithm

- Recursively find optimum point \(x^* \) of \(a_2 \cdot x \leq b_2, \ldots, a_{m-2} \cdot x \leq b_{m-2}, c_1, c_2 \)

- If \(a_1 x^* \leq b_1 \), then \(x^* \) is still optimal

- Otherwise, new optimum intersects the line \(a_1 \cdot x = b_1 \)

- Solve a 1-dimensional problem in \(O(m) \) time

- \(T(m) = T(m-1) + O(m) = O(m^2) \) time

- Can we get \(O(m) \) time?
Seidel’s O(m) Time Algorithm

• Order constraints **randomly**: $a_{i_1} \cdot x \leq b_{i_1}, \ldots, a_{i_{m-2}} \cdot x \leq b_{i_{m-2}}, c_1, c_2$
 • Leave c_1, c_2 at the end
• Recursively find the optimum x^* of $a_{i_2} \cdot x \leq b_{i_2}, \ldots, a_{i_{m-2}} \cdot x \leq b_{i_{m-2}}, c_1, c_2$
• Case 1: If $a_{i_1} \cdot x^* \leq b_{i_1}$, then x^* is overall optimum
 • $O(1)$ time
• Case 2: If $a_{i_1} \cdot x^* > b_{i_1}$, then we need to intersect the line $a_{i_1} \cdot x = b_{i_1}$ with each other line $a_{i_j} \cdot x = b_{i_j}$ and solve a 1-dimensional problem in $O(m)$ time
Backwards Analysis

• Let x^* be the optimum point of $a_{i_2} \cdot x \leq b_{i_2}, \ldots, a_{i_{m-2}} \cdot x \leq b_{i_{m-2}}, c_1, c_2$

• What is the chance that $a_{i_1} \cdot x^* > b_{i_1}$?

• Suppose the optimal point x' of the overall LP is the intersection of $a_{i_j} \cdot x = b_{i_j}$ and $a_{i_{j'}} \cdot x = b_{i_{j'}}$

• If we’ve seen these two constraints, then the new constraint $a_{i_1} \cdot x \leq b_{i_1}$ can’t change the optimum. Otherwise, better solution would be on this new line

• $T(m)$ is expected cost for m constraints, $T(m) \leq (1-2/(m-2)) O(1) + (2/(m-2)) \cdot O(m) + T(m-1)$

 $= O(1) + T(m-1)$

 $= O(m)$. Also add initial $O(m)$ time for finding c_1, c_2
What if the LP is Infeasible?

• Let j be the largest index for which $a_{ij} \cdot x \leq b_{ij}, \ldots, a_{im-2} \cdot x \leq b_{im-2}, c_1, c_2$ is infeasible. That is, $a_{ij+1} \cdot x \leq b_{ij+1}, \ldots, a_{im-2} \cdot x \leq b_{im-2}, c_1, c_2$ is feasible.

• Since $a_{ij+1} \cdot x \leq b_{ij+1}, \ldots, a_{im-2} \cdot x \leq b_{im-2}, c_1, c_2$ is randomly ordered, we spend an expected $O(m-j)$ time to process such constraints.

• When processing $a_{ij} \cdot x \leq b_{ij}$ we will find the constraints are infeasible in $O(m)$ time when solving the 1-dimensional problem.
What If More than 2 lines Intersect at a Point?

• 2 of the constraints “hold down” the optimum

• Additional constraints can only help you
Higher Dimensions?

• The probability that our optimum changes is now at most \(\frac{d}{m-d} \) instead of \(\frac{2}{m-2} \)

• When we find a violated constraint, we need to find a new optimum

• New optimum inside this hyperplane
 • Project each constraint into this hyperplane
 • Solve a \((d-1)\)-dimensional linear program on \(m-1\) constraints to find optimum
 • \(T(d, m) \leq T(d, m - 1) + O(d) + \frac{d}{m-d} [O(dm) + T(d - 1, m - 1)] \)
 • \(T(d,m) = O(d! \ m) \)
Ellipsoid Algorithm

Solves feasibility problem

Replace objective function with constraint, do binary search

Replace “minimize $x_1 + x_2$” with $x_1 + x_2 \leq \lambda$

Can handle exponential number of constraints if there’s a separation oracle