Lecture 1: Introduction and Median Finding

David Woodruff
Carnegie Mellon University
Grading and Course Policies

• All available here: https://www.cs.cmu.edu/~15451/policies.html

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Written Homworks</td>
<td>20% (5% each)</td>
</tr>
<tr>
<td>3 Oral Homworks</td>
<td>15% (5% each)</td>
</tr>
<tr>
<td>Online Quizzes+Class Participation+Bonus</td>
<td>12% (see below)</td>
</tr>
<tr>
<td>Midterm exams (in class)</td>
<td>30% (15% each)</td>
</tr>
<tr>
<td>Final exam</td>
<td>23%</td>
</tr>
</tbody>
</table>

• 12 weekly online quizzes due Thursday 11:59pm
• Solve written homeworks individually. Come to office hours or ask questions on piazza! Latex solutions and submit on gradescope
• Oral homeworks can be solved in groups of 3
• Each quiz is worth 1 point, also up to 3 points for participation, bonus problems
Homework

• Each HW has 4 problems

• One problem is a programming problem – submit via Autolab (languages accepted are Java, C, C++, Ocaml, SML)

• For oral HWs you can collaborate, but write the programming problem yourself. Each team has 45 minutes to present the 3 problems. Feel free to bring in notes!

• Cite any reference material or webpage if you use it

• Randomized grading – we will choose 2 of the 3 problems to grade, while always grading the programming problem

• Late homeworks and “grace/mercy” days – please see the website for details!
Goals of the Course

• Design and analyze algorithms!

• **Algorithms:** dynamic programming, divide-and-conquer, hashing and data structures, randomization, network flows, linear programming

• **Analysis:** recurrences, probabilistic analysis, amortized analysis, potential functions

• **Dual to Algorithms:** complexity theory and lower bounds

• **New Models:** online algorithms, machine learning, data streams
Guarantees on Algorithms

• Want **provable guarantees** on the running time of algorithms

• Why?

 • **Composability**: if we know an algorithm runs in time at most T on any input, don’t have to worry what kinds of inputs we run it on

 • **Scaling**: how does the time grow as the input size grows?

 • **Designing better algorithms**: what are the most time-consuming steps?
Example: Median Finding

• In the median-finding problem, we have an array

\[a_1, a_2, \ldots, a_n \]

and want the index \(i \) for which there are exactly \(\lceil n/2 \rceil \) numbers larger than \(a_i \)

• How can we find the median?
 • Check each item to see if it is the median: \(\Theta(n^2) \) time

 • Sort items with MergeSort (deterministic) or QuickSort (randomized): \(\Theta(n \log n) \) time

• Can we find it faster? What about finding the \(k \)-th smallest number?
QuickSelect Algorithm to Find the k-th Smallest Number

• Assume $a_1, a_2, ..., a_n$ are all distinct for simplicity

• Choose a random element a_i in the list – call this the “pivot”

• Compare each a_j to a_i
 • Let $\text{LESS} = \{a_j \text{ such that } a_j \leq a_i\}$
 • Let $\text{GREATER} = \{a_j \text{ such that } a_j > a_i\}$

• If $k \leq |\text{LESS}|$, find the k-th smallest element in LESS
• If $k = |\text{LESS}| + 1$, output the pivot a_i
• Else find the (k-|LESS|-1)-th smallest item in GREATER

• Similar to Randomized QuickSort, but only recurse on one side!
Bounding the Running Time

• **Theorem:** the expected number of comparisons for QuickSelect is at most $4n$

• Let $T(n) = \max_k T(n, k)$, where $T(n,k)$ is the expected number of comparisons to find the k-th smallest item in an array of length n, maximized over all arrays

• $T(n)$ is a non-decreasing function of n

• Let’s show $T(n) < 4n$ by induction

• **Base case:** $T(1) = 0 < 4$

• **Inductive hypothesis:** $T(n-1) < 4(n-1)$
Bounding the Running Time

• Suppose we have an array of length n

• Pivot randomly partitions the array into two pieces, LESS and GREATER, with |LESS| + |GREATER| = n-1

 • |LESS| is uniform in the set {0, 1, 2, 3, ..., n-1}

 • Since T(i) is non-decreasing with i, to upper bound T(n) we can assume we recurse on larger half

• T(n) ≤ n – 1 + \(\frac{2}{n} \sum_{i=\frac{n}{2},...n-1} T(i) \)

 \leq n – 1 + \frac{2}{n} \sum_{i=\frac{n}{2},...n-1} 4i \quad \text{by inductive hypothesis}

 < n – 1 + 4 \left(\frac{3n}{4} \right) \quad \text{since the average} \ \frac{2}{n} \sum_{i=\frac{n}{2},...n-1} i \ \text{is at most} \ 3n/4

 < 4n \quad \text{completing the induction}
What About Deterministic Algorithms?

• Can we get an algorithm which does not use randomness and always performs $O(n)$ comparisons?

• **Idea:** suppose we could deterministically find a pivot which partitions the input into two pieces LESS and GREATER each of size $\lfloor \frac{n}{2} \rfloor$

• How to do that?

• Find the median and then partition around that
 • Um... finding the median is the original problem we want to solve....
Deterministically Finding a Pivot

• **Idea**: deterministically find a pivot with $O(n)$ comparisons to partition the input into two pieces LESS and GREATER each of size at least $3n/10$

• **DeterministicSelect**:
 1. Group the array into $n/5$ groups of size 5 and find the median of each group
 2. Recursively, find the median of medians. Call this p
 3. Use p as a pivot to split into subarrays LESS and GREATER
 4. Recurse on the appropriate piece

• **Theorem**: DeterministicSelect makes $O(n)$ comparisons to find the k-th smallest item in an array of size n
Running Time of DeterministicSelect

- **DeterministicSelect:**
 1. Group the array into \(n/5 \) groups of size 5 and find the median of each group
 2. Recursively, find the median of medians. Call this \(p \)
 3. Use \(p \) as a pivot to split into subarrays LESS and GREATER
 4. Recurse on the appropriate piece

- Step 1 takes \(O(n) \) time since it takes \(O(1) \) time to find the median of 5 elements
- Step 2 takes \(T(n/5) \) time
- Step 3 takes \(O(n) \) time

Claim: \(|\text{LESS}| \geq 3n/10-1\) and \(|\text{GREATER}| \geq 3n/10-1\)
Running Time of DeterministicSelect

• **Claim:** $|\text{LESS}| \geq \frac{3n}{10} - 1$ and $|\text{GREATER}| \geq \frac{3n}{10} - 1$

• **Example 1:** If $n = 15$, we have three groups of 5:

 \{1, 2, 3, 10, 11\}, \{4, 5, 6, 12, 13\}, \{7, 8, 9, 14, 15\}

 medians: 3, 6, 9

 median of medians p: 6

• There are $g = \frac{n}{5}$ groups, and at least $\left\lfloor \frac{g}{2} \right\rfloor$ of them have at least 3 elements at most p. The number of elements less than or equal to p is at least

 $3 \left\lfloor \frac{g}{2} \right\rfloor \geq \frac{3n}{10}$

• Also at least $\frac{3n}{10}$ elements greater than or equal to p
Running Time of DeterministicSelect

DeterministicSelect:
1. Group the array into n/5 groups of size 5 and find the median of each group
2. Recursively, find the median of medians. Call this p
3. Use p as a pivot to split into subarrays LESS and GREATER
4. Recurse on the appropriate piece

- Steps 1-3 take $O(n) + T(n/5)$ time
- Since $|LESS| \geq 3n/10 - 1$ and $|GREATER| \geq 3n/10 - 1$, Step 4 takes at most $T(7n/10)$ time
- So $T(n) \leq cn + T\left(\frac{n}{5}\right) + T\left(\frac{7n}{10}\right)$, for a constant $c > 0$
Running Time of DeterministicSelect

- $T(n) \leq cn + T\left(\frac{n}{5}\right) + T\left(\frac{7n}{10}\right)$

- Time is $cn \left(1 + \left(\frac{9}{10}\right) + \left(\frac{9}{10}\right)^2 + \ldots\right) \leq 10cn$

- Recurrence works because $n/5 + 7n/10 < n$

- For constants c and a_1, a_2, \ldots, a_r with $a_1 + a_2 + \cdots + a_r < 1$, the recurrence $T(n) \leq T(a_1 n) + T(a_2 n) + \cdots + T(a_r n) + cn$ solves to $T(n) = O(n)$
 - If instead $a_1 + a_2 + \cdots + a_r = 1$, the recurrence solves to $T(n) = O(n \log n)$
 - If we use median of 3 in DeterministicSelect instead of median of 5, what happens?