1. Counts of Substrings

Assume all strings are over a constant-sized alphabet and are indexed starting at 0.

(a) Let x be a string of length n. There are $O(n^2)$ substrings of x, but some of them may have the same sequence of characters, of course. Show how to count the number of distinct substrings of x in $O(n)$ time.

Solution: Build the suffix tree for x. Take any substring that occurs in x. If you start from the root of the suffix tree and follow edges down the tree you will always remain inside the tree. When you stop you will be either at a node in the suffix tree, or you will be part of the way along an edge. (Recall that an edge represents a string of one or more characters.)

The number of places that you can “stop” like this is precisely the number of different substrings of x. So it’s just the sum of the lengths of all the edges in the suffix tree, plus 1 for the empty string.

(b) In a string S, a maximal repeat occurrence is a pair of positions i and j in S and a length k such that:

- $S[i, \ldots, i + k - 1] = S[j, \ldots, j + k - 1]$,
- $S[i - 1] \neq S[j - 1]$,
- $S[i + k] \neq S[j + k]$

Above, we take $S[-1]$ and $S[n]$ to be symbols distinct from every other symbol. A maximal repeat string is a string w such that there is a maximal repeat occurrence (i, j) with $S[i, \ldots, i + |w| - 1] = w$.

(i) Give an example of a string in which two different maximal repeat strings both start at the same position. In other words, find a string with two maximal repeat occurrences (i, j, k) and (i, j', k').

Solution: Consider the following string of length 10:

```
<table>
<thead>
<tr>
<th>b</th>
<th>a</th>
<th>b</th>
<th>x</th>
<th>c</th>
<th>a</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>
```

$(1, 5, 1)$ is a maximal repeat occurrence, and $(1, 7, 2)$ is also.

(ii) Using suffix trees, give a short, elegant proof that there are $\leq n$ distinct maximal repeat strings.

Solution: Consider taking a maximal repeat string w and walking down the path it defines in the suffix tree. The place that it ends must have at least two continuations: One for each of its occurrences. Therefore it must end at an internal node of the
suffix tree. A suffix tree for the string \(s[0] \ldots s[n] \) has \(n \) suffixes, and at most \(n - 1 \) internal nodes. So there are at most \(n - 1 \) maximal repeat strings. Note that this does not even use the fact that the characters prior to the two starts of a maximal repeat string must differ.

2. Farthest Apart

You’re given an unrooted tree of \(n \) nodes. Some of the nodes are marked. Let \(\text{mark}(x) \) be a boolean valued function which is true if node \(x \) is marked and false otherwise. At least two nodes are marked.

(a) Give an algorithm that runs in time \(O(n) \) to compute the maximum distance between a pair of marked nodes. The distance is just the number of edges in the tree on the path between the two nodes.

Solution: Use “Tree DP”. At each node \(x \) in the tree we recursively compute and return two numbers: deepest, and farthest-pair.

deepest\((x)\) = the maximum distance between \(x \) and a marked node in the subtree rooted at \(x \).

furthest-pair\((x)\) = the maximum distance between a marked pair of nodes in the subtree rooted at \(x \).

deepest\((x)\) is just one plus the value of the deepest() values of all of its children.

furthest-pair\((x)\) is computed by taking the maximum of all the furthest-pair() values of all the children of \(x \). And also considering the longest path that goes through \(x \). This is just \(2 + d_1 + d_2 \), where \(d_1 \) is the largest deepest() value among its children, and \(d_2 \) is the second largest such value. It also has to consider the possibility that \(x \) is marked. (The special cases of \(x \) having no children, or just one child also need to be considered.)

(b) Explain how to modify the algorithm in part (a) to find the pair that are farthest apart.

Solution: The answer can be reconstructed if we just compute, at every vertex \(x \), of the deepest node and the numbers of the pair that’s farthest apart in the subtree rooted at \(x \).