(25 pts) 1. (The Counter Strikes Again!) We saw in class that if a binary counter begins at 0, and we perform n increments, the amortized cost per increment is $O(1)$ (i.e., the total cost is $O(n)$). Suppose we want to be able to increment and decrement the counter.

(a) Show a sequence of n operations allowing both increments and decrements and starting from 0 that, without ever making the counter go negative, costs $\Omega(\log n)$ amortized per operation (i.e., $\Omega(n \log n)$ total cost).

Solution: Let $2^{b+1} \leq n \leq 2^{b+2}$. Use $2^b \leq n/2$ operations to transform the number to a 1 followed by b 0's. This takes at least 2^b work. Then alternately decrement and increment the number for the remaining $\geq 2^b$ steps. Each of these operations takes $b+1$ work. So, the total work over all these operations is at least $2^b + (b+1)2^b = (b+2)2^b$. Thus the amortized cost per operation is more than $b2^b/n \geq b2^b/(2^b+2) = b/4 = \Omega(\log n)$.

To reduce the cost observed in part (a) consider a counter using the following redundant ternary number system. A number is represented by a sequence of trits, each of which is 0, +1, or −1. The value of the number represented by t_{k-1}, \ldots, t_0 (where each $t_i, 0 \leq i \leq k-1$ is a trit) is defined to be

$$\sum_{i=0}^{k-1} t_i 2^i.$$

For example, [1 0 -1] is a representation for $2^2 - 2^0 = 3$.

To increment a ternary number: You add 1 to the low order trit. If the result is 2, then it is changed to 0, and a carry is propagated to the next trit. This process is repeated until no carry results. Decrementing a number is similar. You subtract 1 from the low order trit. If it becomes -2 then it is replaced by 0, and a borrow is propagated. Note that the same number may have multiple representations (e.g., [1 0 1] = [1 1 -1]) — it’s a redundant ternary number system. The cost of an increment or a decrement is the number of trits that change in the process.

(b) Starting from 0, a sequence of n increments and decrements is done. Give a clear, coherent proof that with this representation, the amortized cost per operation is $O(1)$ (i.e., the total cost for the n operations is $O(n)$).

Solution: When the number is incremented or decremented, some 1s may change to 0 and some −1s may change to 0, but a 1 will never directly change to −1 or vice versa. This means that if 2 is paid each time a 0 is changed (to 1 or −1), there will be enough money in the bank to pay for converting it back to a 0. (Think of having a separate bank account for each digit.) The second fact is that in any increment or decrement, at most one 0 changes (to either 1 or −1). Therefore, the amortized cost per operation is ≤ 2.

1
(25 pts) 2. (The Quickest Quack)

(a) We want to maintain a max-stack, a data structure with the following operations.

- **push**(number x), pushes x on the stack
- **pop**, pops the top element off the stack
- **return-max**, returns the maximum number among the elements still on the stack. (Does not push or pop anything.)

How would you implement a max-stack, while maintaining constant time per operation (worst-case). Clarifications: You are allowed to allocate infinitely large arrays, etc. On an empty stack, return NULL on a pop/return-max. (Similar clarifications apply to the following parts.)

Solution: Have an array with a top pointer as in the usual array-based implementation of a stack, but give each element of the array two fields: one for the item and one for the max so far. When pushing a new item x, we set A[++top].item = x as usual, and then update the maximum by setting A[top].max = max(A[top-1].max, x). By induction, we maintain the invariant that A[i].max is the maximum out of A[0].item, ..., A[i].item for all values of i from 0 to top. (And this invariant is clearly maintained on a pop as well). Thus, the return-max operation can just return A[top].max.

(b) We want to now maintain a max-queue, which is what you’d expect given the previous definition. It supports the following operations.

- **enqueue**(number x), adds x to the end of the queue
- **dequeue**, removes the element at the front of the queue
- **return-max**, returns the maximum number among the elements still in the queue. (Does not enqueue or dequeue anything.)

Show how to use two max-stacks to implement a max-queue. This max-queue should take O(1) amortized time per operation. That is, a sequence of n operations (consisting of some number of enqueue, dequeue and return-max operations in any order) should take total time O(n).

Solution: we implement the queue using two stacks exactly as in the problem from Quiz #1, using push and pop operations from part (a) to implement the dump operation (that dumps one stack into the other). This ensures that both stacks maintain the invariant from part (a), namely A[i].max is the maximum out of A[0].item, ..., A[i].item. To implement return-max we just call return-max on each of the two stacks and return the larger value.

(c) Consider the streaming setting, where you are making one pass over the stream \(a_1, a_2, \ldots, a_n\), with each \(a_i\) being a number. You are given a number \(r \geq 1\). For each time \(t\), when you see \(a_t\), you want to output the maximum value among the past \(r\) elements \(a_{t-r+1}, a_{t-r+2}, \ldots, a_t\). E.g., if \(r = 4\) and the input stream is

\[3, 17, 3, 9, 2, 0, 7, 2, 8, 9, 1, 8, 4, 5, 9\]
then the output stream should be

3, 17, 17, 17, 9, 9, 7, 8, 9, 9, 8, 9

Give an algorithm that makes one pass over a stream of \(n \) numbers to produce the desired output stream, and the total time taken is \(O(n) \). You are allowed enough space to store \(O(r) \) elements. (Note that taking time \(O(rn) \) would be trivial by just storing the most recent \(r \) elements and recomputing the max from scratch each time – you want to do better than that.)

Solution: We just use the queue from part (b). For the first \(r \) entries, we just do an \(\text{enqueue}(x) \) and \(\text{return-max} \). For the rest we do \(\text{enqueue}(x) \), \(\text{dequeue()} \) and then \(\text{return-max} \).

(25 pts) 3. (An Interesting Hash Family.)

We say that \(H \) is \(\ell \)-universal over range \(m \) (or \(\ell \)-wise independent) if for every fixed sequence of \(\ell \) distinct keys \(\langle x_1, x_2, \ldots, x_\ell \rangle \), if we choose a hash function \(h \) at random from \(H \), the sequence \(\langle h(x_1), h(x_2), \ldots, h(x_\ell) \rangle \) is equally likely to be any of the \(m^\ell \) sequences of length \(\ell \) with elements drawn from \(\{0, 1, \ldots, m-1\} \). It’s easy to see that if \(H \) is 2-universal then it is universal. (Check for yourself!)

Consider a universe \(U \) of binary strings \(s = s_1, s_2, \ldots, s_n \) of length \(n \) from an alphabet of size \(k \). (Each character is an integer in \(\{0, 1, \ldots, k-1\} \).) Hence \(|U| = k^n \). Assume that \(m = 2^b \).

An interesting universal family \(G \) (of functions from \(U \) to \(\{0, \ldots, m-1\} \)) can be obtained as follows. First, generate a 2-dimensional table \(T \) of \(b \)-bit random numbers; recall that \(b = \lg(m) \). The first index of \(T_{i,j} \) is in the range \([1, n]\) and the second index is in the range \([0, k-1] \). Now define the hash function \(g_T() \) as follows:

\[
g_T(s) = \bigoplus_{i=1}^{n} T_{i,s_i}
\]

where “\(\bigoplus \)” represents the bitwise-xor function (recall, each \(T_{i,j} \) is a \(b \)-bit string). The output of \(g_T(s) \) is a \(b \)-bit string which is then interpreted as a number in \(\{0, \ldots, m-1\} \). Note that since each choice of the table \(T \) gives a hash function \(g_T \), and \(T \) is specified by \(n \cdot k \cdot b \) bits, the family \(G \) consists of \(2^{nkb} \) functions.

(a) (10 pts) Prove that \(G \) is not 4-universal.

Solution: For instance, consider the following 4 keys of length 2 (so \(n = 2 \)): \(00, 11, 01, 10 \). Whatever \(T \) is, these keys have the property that \(g_T(00) \oplus g_T(11) \oplus g_T(01) \oplus g_T(10) = 0 \) since each of the four entries in \(T \) is xor’ed twice. This means that the hash of any one of the strings can be determined from the hash of the other three, so there is no way that all 4-tuples of hash-codes are equally likely.

Hint: To show that \(G \) is not 4-universal, you should exhibit 4 distinct keys \(\langle x_1, x_2, x_3, x_4 \rangle \) such that if you were told the values of \(g_T(x_1), g_T(x_2), \) and \(g_T(x_3) \), you could infer the
value of $g_T(x_4)$ uniquely (without knowing anything else about T). This will mean that not all 4-tuples of hash-values are equally likely, since the first 3 entries in the tuple $(g_T(x_1), g_T(x_2), g_T(x_3), g_T(x_4))$ determined the 4th entry. You can do this using $n = 2$ and $k = 2$.

(b) (15 pts) Prove that G is 3-universal. (You can get 7 of these points by proving the weaker statement that it is 2-universal.)

Solution: To show why G is 3-universal, consider three distinct keys x, y, z. We now consider two cases:

Case 1: there is some index i such that all three keys differ in that index. We now argue as follows. Consider choosing all of T except for $T_{i,x}$. Thus, filling in this row of T will determine the hash codes for x, y, and z. We first fill in $T_{i,x}$: since each value for this entry produces a different value for $g_T(x)$, we have that x is equally likely to hash to all possible b-bit values. Now $g_T(x)$ is fixed. We now fill in $T_{i,y}$: again, since each value for this entry produces a different value for $g_T(y)$, we have that y is equally likely to hash to all possible b-bit values, even conditioning on everything done so far. This means that x and y’s hash values are independent. Now $g_T(x)$ and $g_T(y)$ are fixed. We now fill in $T_{i,z}$: again, since each value for this entry produces a different value for $g_T(z)$, we have that z is equally likely to hash to all possible b-bit values, even given everything so far. So all triples of hash values are equally likely.

Case 2: there is no index i such that all three keys differ in that index. In this case, choose some index i such that $x_i \neq y_i$ (this must exist since $x \neq y$). We know z_i matches one of the other two, so say without loss of generality that $z_i = y_i$. Choose some other index j such that $z_j \neq y_j$. We know that x_j matches one of those two values so say without loss of generality that $x_j = y_j$. We can now argue as in Case 1. First fill in all of T except for $T_{i,x}, T_{i,y}, T_{j,z}$. Now, filling in $T_{i,x}$ determines x’s hash (all equally likely), then filling in $T_{i,y}$ determines y’s hash (all equally likely, no matter what x hashed to), then filling in $T_{j,z}$ determines z’s hash value (all equally likely, no matter what x, y hashed to).