This HW has three regular problems, one programming problem, and one bonus problem. All problems on written HWs are to be done individually, no collaboration is allowed.

Solutions to the three written problems should be submitted as a single PDF file using gradescope, with the answer to each problem starting on a new page.

Submission instructions for the programming problem will be posted on the website and Piazza.

Problem 5 is a bonus problem. It is an interesting fun problem that is not that hard. But it optional, and you won’t get hints or assistance from the course staff. It is worth 1% under the quiz/bonus category if you solve it correctly. No partial credit. No collaboration.

(25 pts) 1. **(Recurring Recurrences.)**

Solve each recurrence below in Θ notation. As always, prove your answer. For all of these problems $T(1) = 1$.

(a) Solve $T(n) = 3T(\lfloor n/2 \rfloor) + n$.

(b) Now solve $T(n) = 3T(\lfloor n/2 \rfloor) + n \lg n$.

(c) Finally, solve $T(n) = n^{2/3}T(\lfloor n^{1/3} \rfloor) + n$.

(E.g., we might get this from a divide-and-conquer procedure that uses linear time to break the problem into $n^{2/3}$ pieces of size $n^{1/3}$ each. Hint: write out the recursion tree.)

(25 pts) 2. **(I’m All Out of Sorts)** Consider the following problem.

INPUT: n^2 distinct numbers in some arbitrary order.

OUTPUT: an $n \times n$ matrix containing the input numbers, and having all rows and all columns sorted in increasing order.

EXAMPLE: $n = 3$, so $n^2 = 9$. Say the 9 numbers are the digits 1, . . . , 9. Possible outputs include:

```
1 4 7 1 4 5 1 3 4 1 2 3
2 5 8 or 2 6 7 or 2 5 8 or 4 5 6 or ...
3 6 9 3 8 9 6 7 9 7 8 9
```

It is clear that we can solve this problem in time $2n^2 \lg n$ by just sorting the input (remember that $\lg(n^2) = 2\lg n$) and then outputting the first n elements as the first row, the next n elements as the second row, and so on. Your job in this problem is to prove a matching $\Omega(n^2 \log n)$ lower bound in the comparison-based model of computation.³

³By an “$\Omega(n^2 \log n)$ lower bound”, we mean a lower bound of $cn^2 \log n$ for some constant $c > 0$ that is independent of n.
For simplicity, you can assume \(n \) is a power of 2. Recall \(\log x = \log_2 x \).

Some hints: Show that if you could solve this problem using \(o(n^2 \log n) \) comparisons (in fact, in less than \(n^2 \log(n/e) \) comparisons), then you could use this to violate the \(\log(m!) \) lower bound for comparisons needed to sort \(m \) elements (which we prove in Lecture #2). You may want to use the fact that \(m! > (m/e)^m \). Also, recall that you can merge two sorted arrays of size \(n \) using at most \(2n - 1 \) comparisons.

(25 pts) 3. More Upper/Lower bounds (Stuck Here in the Middle with You.)

Consider the problem of finding both the maximum element and the minimum element of an arbitrary set of \(n \) distinct numbers, where \(n \) is even.

It turns out that \(\frac{3}{2}n - 2 \) comparisons are required in the worst case to do this. That is, \(\frac{3}{2}n - 2 \) is a lower bound on the number of comparisons needed. There’s also an algorithm that achieves this bound. That is \(\frac{3}{2}n - 2 \) is an upper bound on the number of comparisons needed. Since these bounds are equal, they are optimal.

(a) Prove the following theorem:

Theorem: Consider a deterministic comparison based-algorithm \(A \) which does the following: Given a set \(S \) of \(n \) numbers as input, \(A \) returns the largest and the smallest element of \(S \). Prove that there is an input on which \(A \) must perform at least \(\frac{3}{2}n - 2 \) comparisons.

Hints:

Call an element *top* if it has been involved in at least one comparison and it has never lost a comparison.

Call an element *bottom* if it has been involved in at least one comparison and never won a comparison.

Call an element *free* if it has been involved in zero comparisons.

Call an element *middle* if it has won at least one comparison and lost at least one comparison.

Every element falls into exactly one of these categories, and this classification of elements evolves over time. Initially all elements are free. You know that at the end of a run of any correct algorithm, there are ______ free ones, ______ middle ones, ______ top ones and ______ bottom ones.

Define a potential function \(\Phi() \) that is a linear function in the number of each type of element. You, the adversary, have to decide the outcome of each comparison to give to algorithm \(A \) when it asks you to compare two elements. By making the “right” choice of the outcome of a comparison, you should ensure that the potential decreases by at most 1 for each comparison. Using this fact, along with the initial value and final value of the potential, prove that algorithm \(A \) must do at least \(\frac{3}{2}n - 2 \) comparisons.

(b) The proof above leads to an optimal deterministic algorithm (in terms of the number of comparisons). Describe one such algorithm.
(25 pts) 4. Programming: Multi-Medians

Write a program which takes as input a list of \(n \) distinct numbers \(a_1, a_2, \ldots, a_n \), and outputs the smallest one, the second smallest one, the fourth smallest one, \(\cdots \), the \(2^k \)th smallest one, etc. In other words, if \(b_1 < b_2 < \ldots < b_n \) is the set of elements in input list after they have been sorted, then the output is a sequence \(b_1, b_2, b_4, \ldots, b_{2^k} \), where \(2^k \) is the greatest power of 2 that is at most \(n \).

Your algorithm should have \(O(n) \) running time (deterministic worst-case or randomized expected). Please include a comment at the start of your program explaining your algorithm, and why it runs in linear time.

Details on how to submit, grading policy, etc., will be on the course website and piazza soon.

INPUT: The first line contains \(n \), which is at most \(10^6 \). The second line consists of the numbers \(a_1, a_2, \ldots, a_n \) separated by blanks. These numbers satisfy \(-10^9 \leq a_i \leq 10^9\).

OUTPUT: The first line of the output is \(k \). The second line consists of the required \(k + 1 \) numbers, separated by spaces.

For example, if the input is:

```
5
8 3 1 2 6
```

then the output is:

```
2
1 2 6
```

Or if the input is:

```
10
12 5 1000000000 6 7 9 10 8 14 23
```

then the output is:

```
3
5 6 8 14
```

(1 pt bonus) 5. Bonus: Unique-in-range

You’re given an array \(A \) of \(n \) numbers from the set \(\{1, 2, \ldots, n\} \). The array has the “unique-in-range” property if for every range \([i, j]\) there exists an element \(A[k] \) (where \(i \leq k \leq j \)) such that the number \(A[k] \) occurs just once in that range.

For example, the “ruler” sequence: 1 2 1 3 1 2 1 4 1 2 1 3 1 has the unique-in-range property. As does 1 2 3 4 5 6. But the sequence 1 2 3 1 2 3 does not (it fails on the whole range).

Give an algorithm to determine if a given array has the property. It should have runtime \(O(n \log n) \) or better. You must prove your answer.