Dynamic Programming

Off-Line Stock Market Problem You’re given a sequence of stock prices \([p_1, p_2, \ldots, p_n]\). You want to find the maximum profit that you could have made on the stock in hindsight. In other words, you want to find \(i\) and \(j\) with \(1 \leq i \leq j \leq n\) such that \(p_j - p_i\) is maximal. Your algorithm should run in \(O(n)\) time.

Longest Increasing Subsequence: Given an array \(A\) of \(n\) integers like \([7, 2, 5, 3, 4, 6, 9]\), find the longest subsequence that’s in increasing order (in this case, it would be \([2, 3, 4, 6, 9]\)). Give a dynamic-programming algorithm that runs in time \(O(n^2)\) to solve this problem.

1. To keep things simple, first let’s say you just need to output the *length* of the longest-increasing subsequence. E.g., in the above case, the length is 5.

2. Now extend your solution to actually find the LIS.

Making Change: You are given denominations \(v_1, v_2, \ldots, v_n\) (all integers) of the various kinds of currency you have. (Say \(v_1 = 1\), so you can make change for any integer amount \(C \geq 1\).) Given \(C\), give a dynamic programming solution which makes change for \(C\) with the fewest bills possible.

(Again, as a first stab, compute the number of bills required, and then extend the solution to output the number of bills of each denomination needed.)
Making Change (Part II): Now suppose you have only one bill of each denomination \(i \). Given \(C \), give a dynamic programming solution which makes change for \(C \) using the fewest bills, using no more than one bill of each denomination \(i \) (or says this is not possible).

Making Change (Part III): Can you solve the problem if you have \(\ell_i \) bills of denomination \(i \)?

Balanced Partition. You have a set of \(n \) integers each in the range 0, \ldots, \(K \). In time \(O(n^2 K) \), partition these integers into two subsets such that you minimize \(|S_1 - S_2| \), where \(S_1 \) and \(S_2 \) denote the sums of the elements in each of the two subsets.