Recap of this week’s lectures:

- Dynamic programming: top-down and bottom-up
- Examples: Knapsack, Independent set in trees, LCS, etc.
- Single-source shortest path algorithms: Dijkstra and Bellman-Ford
- All-pairs shortest path algorithms: Floyd-Warshall and Matrix-Mult
- Subset DP for TSP

1. **Off-Line Stock Market Problem** You’re given a sequence of stock prices \([p_1, p_2, \ldots, p_n]\). You want to find the maximum profit that you could have made on the stock in hindsight. In other words, you want to find \(i\) and \(j\) with \(1 \leq i \leq j \leq n\) such that \(p_j - p_i\) is maximal. Your algorithm should run in \(O(n)\) time.

2. **Longest Increasing Subsequence**: Given an array \(A\) of \(n\) integers like \([7, 2, 5, 3, 4, 6, 9]\), find the longest subsequence that’s in increasing order (in this case, it would be \(2, 3, 4, 6, 9\)). Give a dynamic-programming algorithm that runs in time \(O(n^2)\) to solve this problem.

 (a) To keep things simple, first let’s say you just need to output the *length* of the longest-increasing subsequence. E.g., in the above case, the length is 5.

 (b) Now extend your solution to actually find the LIS.
3. **Making Change**: You are given denominations v_1, v_2, \ldots, v_n (all integers) of the various kinds of currency you have. (Say $v_1 = 1$, so you can make change for any integer amount $C \geq 1$.) Given C, give a dynamic programming solution which makes change for C with the fewest bills possible.

(Again, as a first stab, compute the number of bills required, and then extend the solution to output the number of bills of each denomination needed.)

Solution:

Create an array B where $B[C']$ represents the fewest bills needed to make change for C'. We can fill this in using the formula $B[C'] = \min \{ B[C' - v_i] + 1 : v_i \leq C' \}$, where we begin with $B[0] = 0$ and then work upward from $C' = 1$ to C'. The total time taken is $O(Cn)$.

4. **Making Change (Part II)**: Now suppose you have only one bill of each denomination i. Given C, give a dynamic programming solution which makes change for C using the fewest bills, using no more than one bill of each denomination i (or says this is not possible).

Solution:

One approach is to create a 2-dimensional array B where $B[C', i]$ represents the fewest bills needed to make change for C' using denominations $1, 2, \ldots, i$ only (or infinity if it is not possible). Base case $B[0, 0] = 0$ and $B[C', 0] = \infty$ for $C' > 0$. For general values of i we have $B[C', i] = \min(B[C' - 1], B[C' - v_i, i - 1] + 1)$ if $C' - v_i \geq 0$ or else $B[C', i] = B[C' - 1]$ if $C' - v_i < 0$.

5. **Making Change (Part III)**: Can you solve the problem if you have ℓ_i bills of denomination i?

6. **Balanced Partition.** You have a set of n integers each in the range $0, \ldots, K$. In time $O(n^2K)$, partition these integers into two subsets such that you minimize $|S_1 - S_2|$, where S_1 and S_2 denote the sums of the elements in each of the two subsets.
7. **Bottleneck Paths.** Given a directed graph G, suppose each edge has a non-negative capacity c_e. Given a directed path from s to t, the bottleneck edge of this path is the min-capacity edge on it. The s-t bottleneck path asks for such a path whose bottleneck edge capacity is as large as possible.

Show how to modify Dijkstra’s algorithm to solve this problem in $O(m \log n)$ time (or $O(m + n \log n)$ time using Fibonacci heaps).

8. **Johnson’s Algorithm.** We did not get a chance to discuss Johnson’s algorithm for APSP, we do that now. (Details in notes, Section 4.3 of Lecture 8).

(a) If the edge-weights are non-negative, running Dijkstra from each node takes $n \cdot O(m + n \log n)$ time. Much faster than F-W if the graph is sparse, i.e., $m \ll n^2$.

(b) Suppose we assign an “offset” Φ_v to each vertex v, and define the offset edge-length of edge (u, v) to be $\ell'_{uv} := \Phi_u + \ell_{uv} - \Phi_v$. Show that a s-t path is a shortest path with respect to lengths ℓ if and only if it is a shortest path with respect to lengths ℓ'.

(c) Call an offset “feasible” if $\ell'_{u,v} \geq 0$ for all edges, even if ℓ could have been negative. Suppose there is a vertex x that has finite distance to every other vertex. Show that $\Phi_v := dist(x, v)$ is a feasible offset.

(d) Infer that you can compute APSP by running Bellman-Ford once (to compute the feasible offset) and then n Dijkstras.
9. **Coloring Dynamically.** Given a graph $G = (V, E)$, a (proper) k-coloring is a coloring of the vertices of the graph using k colors, so that the endpoints of each edge get distinct colors. An equivalent definition is that the vertices having any single color form an *independent set.*

This problem is NP-hard for $k \geq 3$, so we explore fast exponential-time algorithms.

(a) Show that the problem of 2-coloring a graph can be solved in linear time.

(b) The naive algorithm to k-color a graph takes k^n time. Give an algorithm that runs in time $O(k3^n)$. [A simpler bound is $O(k4^n).]

10. **Bin-Packing.** You are given a collection of n items, each item has size $s_i \in [0, 1]$. You have many bins, each of unit size, and you want to pack the n items into as few bins as possible. (Each bin can take a subset of items, whose total size is at most 1.)

Show that you can solve this problem in time $O(n3^n)$. (Hint: subset DP.)