Streaming.

Sampling: Given a number k, you want to maintain a random sample of size k from the stream. I.e., for each $n \geq k$, the set you have at time n should be a random subset of the prefix $a[1:n]$, each of the $\binom{n}{k}$ subsets of size k from this prefix should be equally likely.

1. For $k = 1$, show that the algorithm: pick the first element. When faced with the n^{th} element, with prob. $1/n$ discard the element in your hand and pick the new element, and with prob. $1 - 1/n$ keep the element in hand.

Solution: We claim that for any element from $e \in a[1..n]$, we have e in our hand after step n w.p. $1/n$. The proof is inductive. The base case is easy. Consider the case for element e at some time n.

- If $e \in a[1..n-1]$, then we have it at time $n - 1$ w.p. $\frac{1}{n-1}$. Now at time n, the chance we don’t discard it is $\frac{n-1}{n}$, so multiplying we get $\frac{1}{n}$.
- If $e = a_n$, then the chance we picked it at time n is $1/n$.

2. Give an algorithm for general k. (What would you do when faced with the n^{th} element? With what probability should you pick this element? Which element should you drop?)

Solution: The algorithm: pick the n^{th} item with probability k/n, and drop a uniformly random item from the current set.

Claim: for any k-sized set S from $e \in a[1..n]$, we have S after step n w.p. $\frac{1}{\binom{n}{k}}$. The proof is again inductive. The base case for $n = k$ is easy. Consider the case for element e at some time $n > k$.

- If $S \subseteq a[1..n-1]$, then we have it at time $n - 1$ w.p. $\frac{1}{\binom{n-1}{k}}$. Now at time n, the chance we don’t destroy it is $\frac{n-k}{n}$, so multiplying we get $\frac{k!(n-1-k)!}{(n-1)!} \times \frac{n-k}{n} = \frac{1}{\binom{n}{k}}$.
- If $a_n \in S$, then look at $S_i = (S \setminus \{a_n\}) \cup \{a_i\}$ where $a_i \not\in S$. There are $n-k$ such sets S_i. For each of the $n-k$ sets, inductively the chance we have it at time $n - 1$ is $\frac{1}{\binom{n-1}{n-1}}$, then we have to drop a_i (w.p. $1/k$), and add a_n (w.p. $1/n$). Overall we get

$$
(n-k) \times \frac{k!(n-1-k)!}{(n-1)!} \times \frac{1}{k} \times \frac{k}{n} = \frac{1}{\binom{n}{k}}.
$$

This idea is called **Reservoir Sampling**.
Missing Numbers: Suppose I give you a stream of \(n - 1 \) elements, which contains all the numbers from 1 thru \(n \) except one of them. (The numbers do not appear in sorted order.) Clearly you can figure out the missing number by storing all \(n - 1 \) numbers and looking for the missing number. How can you output the missing number with only \(O(\log n) \) space? What if there are two missing numbers: can you again use only \(O(\log n) \) space?

Solution: For one missing number, you can store the sum of all numbers seen so far. Then finally subtract that from \(\frac{n(n+1)}{2} \) to get the missing number. For two, you can store, e.g., the sum, and the sum of their squares. Then you’ll know \(a + b \) and \(a^2 + b^2 \), and can solve for the answer.

You could also have stored the sum and product of the numbers seen, but that requires more space. The product of the numbers could be as large as \(\Omega(n!) \) which requires \(\Omega(n \log n) \) bits to store.
Jaccard Similarity.

Suppose that we have two nonempty sets A and B that are subsets of the same universe U. We can estimate how similar they are with Jaccard similarity, defined as

$$J(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

Note that this value will always be between 0 (when A and B are disjoint) and 1 (when $A = B$).

Suppose that we are being streamed the two sets A and B from the universe U and wish to use a constant amount of space. Also suppose we have a constant-space, perfect hash family $H : U \rightarrow \mathbb{Z}$ with the additional property that $P[h(a) < h(b) < h(c)] = \frac{1}{6}$ for all $a, b, c \in U$, $a \neq b \neq c$. (In other words, we have that $h(a) = h(b) \Rightarrow a = b$, and that any permutation of hash orderings is equally likely.)

Propose an algorithm for estimating the Jaccard similarity. (That is, give an algorithm that outputs a number on the range $[0, 1]$, and outputs the Jaccard similarity in expectation.) How can we improve the expected error in our estimation?

Solution: Independently select k functions at random from H (this takes ck space for some constant c, since we were given that it takes constant space to store our hash functions). For each element of A and B, apply each hash function to the element, and keep track of the minimum result within each set for each hash function. (This takes $2k$ space - k for A and k for B.) Then compare the minimum value under each hash. If m of these values match, report $\frac{m}{k}$ as the Jaccard similarity.

Note that the minimum of the minimums for a single hash function is exactly the minimum hash value of the union. Thus, the probability that the minimums match is exactly the probability that the minimum value under the hash of the union of the two sets is present in both sets; or mathematically, $\frac{|A \cap B|}{|A \cup B|} = J(A, B)$. Thus, treating each of the pairs as a Bernoulli random variable (1 for matching, 0 for not), each has an expected value of $J(A, B)$, and therefore so does their mean (since they were selected independently).

As one would expect, increasing k will reduce the expected error. Estimating the error on this algorithm is beyond what we cover in the course, which is why it isn’t asked in the question. The short answer is that the error is $O\left(\frac{1}{\sqrt{k}}\right)$, which can be derived from the Chernoff bound on the sum of Bernoulli random variables.

This algorithm is based on min-hashing, though the restrictions in that problem are usually different. (Usually we don’t assume the extra property about the hash family, and instead assume that A and B are random sets.)
Fingerprinting.

Many Patterns: You are given a set of patterns \(P_1, P_2, \ldots, P_k \) of equal length (all of them having length \(n \)) and a text \(T \) of length \(m \). Give an algorithm to find all the locations \(i \) such that some pattern \(P_j \) occurs as a substring of \(T \) starting at location \(i \). The expected runtime should be \(O(kn + m) \), and the probability of error is at most 0.01. \(^1\)

Solution: (Sketch.) Use Karp-Rabin fingerprinting and hashing. First, pick a random prime in some set \([M]\) and compute Karp-Rabin hashes \(g_p(P_j) = P_j \mod p \) of the \(P_j \)s in time \(O(kn) \). Store these hashes in another hash table of size \(Ok \) whose hash function \(h \) is chosen from a universal hash family. At each location \(i \) of the text, compute \(g_p(T_{i..i+(n-1)}) \) in \(O(1) \) time, hash this via \(h \) and look for matches over all patterns mapped to this location. In expectation there will be \(O(1) \) of them (since \(k \) patterns are being hashed into \(k \) locations), so the expected time for this is \(O(1) \), and for the whole algorithm is \(O(m + kn) \). The error probability is \(k \) times that in lecture, so choosing \(M = \Theta(kmn \log(kmn)) \) suffices.

\(^1\)Assume you can do arithmetic operations on numbers of size \(O(\log(kmn)) \) in constant time, even modulo a prime.