Counting Axis-Aligned Segment Intersections

You’re given \(n \) vertical line segments in the plane and \(m \) horizontal ones. The problem is to count the number of intersections. The brute-force algorithm is to try intersecting all \(n \) verticals with all \(m \) horizontals, which is \(O(nm) \). Devise a solution based on SegTrees that is \(O((n + m) \log(n + m)) \).

Hint 1: Take advantage of the fact that there are only \(2n + m \) relevant y coordinates where anything interesting happens.

Hint 2: Sweep from left to right, processing each event as it comes. The events are: (1) a vertical segment appears, (2) a left end of a horizontal segment appears and (3) the right end of a horizontal segment appears.

First-Fit

You are packing up \(n \) items into boxes, and want to use as few boxes as possible. Each box can fit a total of 10 pounds of stuff, and the weight of the \(i^{th} \) item is \(w_i \leq 10 \). Your algorithm is this: initially, all the boxes are lined up, empty. You pick the next unpacked item (say item \(i \)), and put it in the first box that can hold the item (i.e., whose current weight is at most \(10 - w_i \)).

1. Argue that if \(OPT \) is the optimal number of boxes into which you can pack all the items, then your algorithm uses at most \(2 \cdot OPT + 1 \) bins.

2. How would you implement the algorithm in time \(O(n \log n) \).

VCG and Pricing Advertisements

We saw the VCG mechanism for incentive-compatible auctions in Lecture. Let’s use this for pricing online advertising slots. There are 2 ad slots that ElGogo wants to sell on a page,
the first slot has a clickthru rate of 0.5, the second has a clickthru rate of 0.3. Each bidder can get at most one slot. There are 4 bidders, with the following valuations:

- A: $10 per click (so, e.g., this bidder values the first slot at 10 * 0.5 = 5, and the second slot at 10 * 0.3 = 3.)
- B: $8 per click
- C: $7 per click
- D: $2 per click

1. What is the social-welfare maximizing allocation?

2. What are the VCG payments?

Combinatorial Auctions

VCG can be used even with complicated preferences. Suppose we have two identical hotel rooms in Las Vegas, a flight ticket f from PIT to LAS, and a concert ticket c in Vegas to auction off. In the following, a generic hotel room is denoted by h, and none of the people want two rooms.

- Buyer A: values \{h\} at $100, \{f\} at $200, \{h, f\} at $450, \{h, f, c\} at $440. (He hates the band in question so much, he gets negative value from getting c along with h, f.) All other sets are valued at $0.
- Buyer B (doesn’t care for the concert): values \{h\} at $50, \{f\} at $400, \{h, f\} at $500, and \{h, f, c\} at $501. All other sets are valued at $0.
- Buyer C (lives in Vegas): values \{c\} (and all sets containing c) at $200.

What is the social-welfare maximizing allocation, and what are the VCG payments?