Weighted Multiplicative Spanners. We saw a greedy algorithm for finding a multiplicative spanner of an unweighted graph in lecture. Recall a \(k \)-multiplicative spanner \(H = (V, E') \) of a given unweighted graph \(G = (V, E) \) on \(n \) nodes, is a subgraph (so \(E' \subseteq E \)) for which for all pairs \(u, v \) of vertices in \(V \), \(d_G(u, v) \leq d_H(u, v) \leq k \cdot d_G(u, v) \). In this problem we will find a multiplicative spanner \(H = (V, E') \) in a \textit{weighted} graph \(G = (V, E) \) on \(n \) nodes, where each edge \(e \in E \) has a positive edge weight \(w_e \). Consider the following algorithm:

1. Initialize \(E' \) to \(\emptyset \)
2. Let \(E = \{e_1 = \{u_1, v_1\}, e_2 = \{u_2, v_2\}, \ldots, e_m = \{u_m, v_m\}\} \) be such that
 \[
 w_{e_1} \leq w_{e_2} \leq w_{e_3} \leq \cdots \leq w_{e_m}.
 \]
3. For \(i = 1, 2, \ldots, m \),

 (a) If the distance between \(u_i \) and \(v_i \) in \(H = (V, E') \) is more than \(k \cdot w_e \), then add the edge \(e_i \) to \(E' \), otherwise discard the edge.
4. Output \(H = (V, E') \).

1. Argue that \(H \) is a \(k \)-multiplicative spanner.

\textbf{Solution:} Consider any pair \(u, v \) of vertices in \(V \). For \(H \) to be a \(k \)-multiplicative spanner, it must be that \(d_H(u, v) \leq k \cdot d_G(u, v) \) (note that trivially \(d_H(u, v) \geq d_G(u, v) \) for all \(u, v \)). Let \(P = (e_{i_1}, e_{i_2}, \ldots, e_{i_r}) \) be an arbitrary shortest path in \(G \) between \(u \) and \(v \). Then for each edge \(e_{i_j} = \{u_{i_j}, v_{i_j}\} \) along \(P \), either \(e_{i_j} \in E' \) and so \(d_H(u_{i_j}, v_{i_j}) \leq w_{e_{i_j}} \) (in fact, equality holds, as otherwise there would be a shorter path from \(u \) to \(v \)), or \(d_H(u_{i_j}, v_{i_j}) \leq k w_{e_{i_j}} \) by definition of the algorithm. Since \(d_G(u, v) = \sum_{j=1}^{r} w_{e_{i_j}} \), it follows that \(d_H(u, v) \leq \sum_{j=1}^{r} k \cdot w_{e_{i_j}} \). Since \(u, v \) were arbitrary, it follows that \(H \) is a \(k \)-multiplicative spanner.

2. Argue that for any choices of the weights \(w_e \), the girth (minimum cycle length) of \(H \) is at least \(k + 2 \).

\textbf{Solution:} Suppose the girth were at most \(k + 1 \), and consider the last edge \(e = \{u, v\} \) the algorithm adds to \(H \) along some cycle \(C \) of length at most \(k + 1 \). Since the algorithm added \(e \) to \(H \), it must have been that before adding \(e \), \(d_H(u, v) > k \cdot w_e \). Since we process the edges of \(G \) in non-decreasing order of weights though, each of the edges in \(C \setminus \{e\} \) has weight at most \(w_e \). Consequently, \(C \setminus \{e\} \) must have at least \(k + 1 \) edges, as otherwise the path from \(u \) to \(v \) along \(C \setminus \{e\} \) would have total weight at most \(k \cdot w_e \), a contradiction. But this implies \(C \) is a cycle of length at least \(k + 2 \), a contradiction.
3. What is an upper bound on the number of edges in H?

Solution: From lecture, if $k = 2t$ or $k = 2t - 1$, a graph with girth at least $k + 2$ has at most $O(n^{1+1/t})$ edges.

The Variance of CountSketch. Recall in lecture we introduced the CountSketch, which is a random linear map S from \mathbb{R}^n to \mathbb{R}^k, for $k = \Theta(1/\epsilon^2)$, defined as follows. Let $h : \{1, 2, \ldots, n\} \rightarrow \{1, 2, \ldots, k\}$ be a 2-wise independent hash function, and $\sigma : \{1, 2, \ldots, n\} \rightarrow \{-1, 1\}$ be a 4-wise independent hash function. Then for $i = 1, 2, \ldots, k$, we have $(Sx)_i = \sum_j \{h(j) = i\} \sigma(j) x_j$, where x is the n-dimensional input vector.

In lecture, we showed $E[||Sx||^2] = ||x||^2$, and claimed that $\text{Var} [||Sx||^2] = O(||x||^4/k)$. We saw that these statements, by Chebyshev’s inequality, imply $\Pr[||Sx||^2 - ||x||^2 > \epsilon ||x||^2] \leq \frac{1}{10}$. Prove that $\text{Var} [||Sx||^2] \leq \frac{2}{k} ||x||^4$.

Solution: Write $||Sx||^2 = \sum_{i=1}^{k} (\sum_{j=1}^{n} \delta(h(i) = j) \sigma(i)x_i)^2$, where $\delta(h(i) = j) = 1$ if $h(i) = j$, otherwise $\delta(h(i) = j) = 0$. We are interested in $\text{Var} [||Sx||^2] = E[(||Sx||^2)^2] - (E[||Sx||^2])^2$, and already know from lecture that $(E[||Sx||^2])^2 = ||x||_4^2$, where $||x||_2^2 = \sum_{i=1}^{n} x_i^2$. We bound $E[||Sx||^4]$. Write $||Sx||^4$ as:

$$||Sx||^4 = \left(\sum_{j=1}^{k} \left(\sum_{i=1}^{n} \delta(h(i) = j) \sigma(i)x_i \right)^2 \right),$$

which, after expanding the squares, is:

$$\sum_{j_1,j_2=1}^{k} \sum_{i_1,i_2,i_3,i_4=1}^{n} \delta(h(i_1) = j_1)\delta(h(i_2) = j_1)\delta(h(i_3) = j_2)\delta(h(i_4) = j_2)\sigma(i_1)\sigma(i_2)\sigma(i_3)\sigma(i_4)x_{i_1}x_{i_2}x_{i_3}x_{i_4}.$$

By linearity of expectation, $E[||Sx||^4]$ equals

$$\sum_{j_1,j_2=1}^{k} \sum_{i_1,i_2,i_3,i_4=1}^{n} E[\delta(h(i_1) = j_1)\delta(h(i_2) = j_1)\delta(h(i_3) = j_2)\delta(h(i_4) = j_2)\sigma(i_1)\sigma(i_2)\sigma(i_3)\sigma(i_4) x_{i_1}x_{i_2}x_{i_3}x_{i_4}].$$

Since $x_{i_1}, x_{i_2}, x_{i_3}, \text{ and } x_{i_4}$ are constants, and h and σ are independent, we can write this as

$$\sum_{j_1,j_2=1}^{k} \sum_{i_1,i_2,i_3,i_4=1}^{n} E[\delta(h(i_1) = j_1)\delta(h(i_2) = j_1)\delta(h(i_3) = j_2)\delta(h(i_4) = j_2)] \cdot E[\sigma(i_1)\sigma(i_2)\sigma(i_3)\sigma(i_4)] x_{i_1}x_{i_2}x_{i_3}x_{i_4}. \quad (1)$$

If i_1, i_2, i_3, i_4 are distinct, then by 4-wise independence of σ and the fact that $E[\sigma(i_1)] = 0$, we have $E[\sigma(i_1)\sigma(i_2)\sigma(i_3)\sigma(i_4)] = 0$. By similar reasoning, $E[\sigma(i_1)\sigma(i_2)\sigma(i_3)\sigma(i_4)] = 0$ unless either 1) $i_1 = i_2 = i_3 = i_4$, or 2) $i_1 = i_2$ and $i_3 = i_4$ but $i_1 \neq i_3$, or 3) $i_1 = i_3$ and $i_2 = i_4$ but $i_1 \neq i_2$, or 4) $i_1 = i_4$ and $i_2 = i_3$ but $i_1 \neq i_2$. In each of these cases, $E[\sigma(i_1)\sigma(i_2)\sigma(i_3)\sigma(i_4)] = 1.$
Case 1: if $j_1 \neq j_2$, $\mathbb{E}[\delta(h(i_1) = j_1)\delta(h(i_2) = j_1)\delta(h(i_3) = j_2)\delta(h(i_4) = j_2)] = 0$ since the same index i cannot hash to more than one bucket. If $j_1 = j_2$, then $\mathbb{E}[\delta(h(i_1) = j_1)\delta(h(i_2) = j_1)\delta(h(i_3) = j_2)\delta(h(i_4) = j_2)] = 1/k$, so (1) simplifies to $\sum_{j=1}^{n} (1/k)x_i^4 = \sum_{i=1}^{n} x_i^4 = \|x\|^4_4$.

Case 2: $\mathbb{E}[\delta(h(i_1) = j_1)\delta(h(i_2) = j_1)\delta(h(i_3) = j_2)\delta(h(i_4) = j_2)] = 1/k^2$, and so (1) simplifies to $\sum_{j_1,j_2} \sum_{i_1 \neq i_3} (1/k^2)x_i^2x_i^3 = \sum_{i_1 \neq i_3} x_i^2x_i^3 \leq \|x\|^3_4 - \|x\|^4_4$. Here $\|x\|^3_4 = \sum_{i=1}^{n} x_i^2$.

Case 3: if $j_1 \neq j_2$, $\mathbb{E}[\delta(h(i_1) = j_1)\delta(h(i_2) = j_1)\delta(h(i_3) = j_2)\delta(h(i_4) = j_2)] = 0$ since the same index i cannot hash to more than one bucket. If $j_1 = j_2$, then (1) simplifies to $\sum_{j=1}^{n} \sum_{i_1 \neq i_2} (1/k^2)x_i^2x_i^2 \leq \frac{1}{k}\|x\|^2_4$.

Case 4: is analogous to case 3. For completeness: if $j_1 \neq j_2$, $\mathbb{E}[\delta(h(i_1) = j_1)\delta(h(i_2) = j_1)\delta(h(i_3) = j_2)\delta(h(i_4) = j_2)] = 0$ since the same index i cannot hash to more than one bucket. If $j_1 = j_2$, then (1) simplifies to $\sum_{j=1}^{n} \sum_{i_1 \neq i_2} (1/k^2)x_i^2x_i^2 \leq \frac{1}{k}\|x\|^2_4$.

Summing over the four cases, (1) is upper bounded as $\|x\|^4_4 + \frac{2}{k}\|x\|^4_4$. Hence, $\text{Var}[\|Sx\|^2] = \mathbb{E}[(\|Sx\|^2)^2] - (\mathbb{E}[\|Sx\|^2])^2 \leq \frac{2}{k}\|x\|^2_4$.

Locality Sensitive Hashing (LSH) for Jaccard Similarity In lecture we looked at LSH for Hamming distance on the Hamming cube. Here we look at the Jaccard measure: choose a random permutation π on the universe U. For a set $S \subseteq U$, the LSH for Jaccard measure is simply $h(S) =$First element in S according to permutation π. Consider two sets S_1 and S_2. The Jaccard measure between them is $J(S_1, S_2) = |S_1 \cap S_2|/|S_1 \cup S_2|$.

1. Argue that $\text{Pr}[h(S_1) = h(S_2)] = J(S_1, S_2)$.

 Solution: There are $|S_1 \cup S_2|$ items in the union. In the permutation π defined by h, the first element in S_1 and the first element in S_2 are necessarily in $S_1 \cup S_2$. If these elements are in $S_1 \cap S_2$, then they are the same element and $h(S_1) = h(S_2)$.

 Suppose we define distance as $D(S_1, S_2) = 1 - J(S_1, S_2)$.

2. Show that for any $r > 0$, if $D(S_1, S_2) < r$, then $\text{Pr}[h(S_1) = h(S_2)] \geq 1 - r$.

 Solution: If $D(S_1, S_2) < r$, then $J(S_1, S_2) > 1 - r$, and we can apply the previous part.

3. Show that for any $r > 0$ and $c > 1$, if $D(S_1, S_2) \geq cr$, then $\text{Pr}[h(S_1) = h(S_2)] \leq 1 - cr$.

 Solution: If $D(S_1, S_2) \geq cr$, then $J(S_1, S_2) \leq 1 - cr$, and we can apply the previous part.

4. What is the expected query time and the space if you have n sets, as a function of c?

 Solution: From lecture the space is $O(n^{1+\rho} \log n)$ bits, plus the space to store the original n sets (the log n comes from storing a pointer to one of the original n sets), and the expected query time is $O(n^{\rho} \cdot |U|)$. Here $\rho = \log(1/(1-c)) / \log(1/(1-cr))$.

3