the adversary game

part I: Claude’s Education Begins
Shall we play a game?

twenty questions...

I guess a number \(N \) between 1 and \(2^{20} \). You ask yes/no questions of the form “is \(N \leq \text{blah} \)”, and after 20 questions you must tell me what \(N \) is.
sure!
Heh, this Claude guy sounds like an easy target...

I will not think of a single N, of course.

Each time I will try to answer in such a way that at the end, there are at least 2 numbers satisfying all the answers I have given.

So whatever number he says at the end, I can say N was the other number!

hee hee.
Initially, no answers given: N could be any number in $[1,2^{20}]$

OK Claude, ask away...

Is $N \leq 500K$?
Let's see. If I say "yes", N lies in [1, 500000],
else it lies in [500001, 2^{20} = 1048576].

I have more options if I go with "no"

No.

Is N <= 800K?
Hmm. If “yes”, N lies in [500001, 800000].
else N lies in [800000, 1048576].

Now I have more options if I go with “yes”.

... and so on ...

Yes.
after the 20th question...

The set of numbers \([561382, 583841]\)
all satisfy the answers I have given so far.

is it 575757?

No. Sorry, Claude, you lose, it was 575758!
rats!
Hmm, I see what he did there.
He did not really fix a single “true” N...

He answered so that
the “set of valid N’s” was at least
half of the previous set.

Since at least two valid Ns remained, I lost.
So my best bet is to halve the set of valid N's with each question!

(I messed up earlier: I did not halve each time.)

Let me call this “halving” search
Actually, "binary" search sounds better...
btw, can I win if I do binary search?

At the start, there are 2^{20} possible N's.
Each time I will exactly halve this range.
(and I can exactly halve each time)

So after 20 questions I can get the range down to a single value of N. And win.
Hmm. Also, 19 questions would not have been enough to find a number in $[1,2^{20}]$. (unless the adversary is silly, which he is not.) This sounds like a general principle.
ok, adversary, let's play again
Initially, no answers given:
N could be any number in $[1, 2^{20}]$

OK Claude, ask away...

Is $N \leq 2^{19} = 524288$?
If I say “yes”, N lies in $[1, 2^{19}]$, else it lies in $[2^{19}+1, 2^{20}]$.

I have the same # of options (2^{19}).
I can go with “no”.

No. $N > 2^{19}$.

Is $N \leq 2^{19} + 2^{18}$?
Hmm. If “yes”, N lies in $[2^{19}, 2^{19}+2^{18}]$. Else N lies in $[2^{19}+2^{18}, 2^{20}]$.

Equal number of options again. I can go with either answer. Let me choose one.

Yes.

... and so on ...
ok, adversary, after these 20 questions there's a unique number N consistent with your answers.

I win.

You just got lucky...
after a few games...
OK, ok, enough with these childish games, young Claude.

How about we play a real game?

tell me...
I think of integer N in \([1, 2^{20} + 1]\)...

But now you can ask me any twenty yes/no questions about N.

After 20 questions you must tell me what N is.

E.g., you can ask me:
- Is N in the set \([7, 9, 63, 256, 1079993]\)?
- or is \(2^{2^N} - 1\) a prime number?
- or is the 7th bit of N set?
- or are \((N, N+2)\) a Goldbach pair?
- whatever yes/no questions you want.
So I expand my range of N's by just one.

And give you the vast power to ask any possible yes/no questions

Should we play?
should Claude play?

why/why not?

Where will these games end?

stay tuned for the answers…
featuring

BSD “beastie” deamon
Claude Elwood Shannon

the adversary
Claude

BSD Daemon image from Wikipedia (which is from the CD-ROM for FreeBSD 2.0)
based on original artwork by Phil Foglio
Shannon image from the Shannon Centennial Celebration webpage at U.Mich.
xkcd font by Randall Monroe, at https://github.com/ipython/xkcd-font