15-451/651 Algorithm Design & Analysis, Spring 2024

Extra Review Problems

Network Flows

- 1. (Short answer / multiple choice)
 - (a) Suppose in a graph G, there exists a cut of capacity c and a flow of value f. Which of the following statements is definitely true?
 - (i) $c \le f$
 - (ii) $c \ge f$
 - (iii) c = f
 - (iv) c < f
 - (v) c > f
- 2. (Net flow) Recall that the *net flow* across an s-t cut (S,T) is defined to be

$$f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{u \in S} \sum_{v \in T} f(v,u),$$

and that the value of a flow is defined to be

$$|f| = \sum_{u \in V} f(s, u) - \sum_{u \in V} f(u, s).$$

Prove formally, using the definitions, that the net flow across *any* s-t cut is |f|.

- (Fractional max flow) Give an example of a flow network and a maximum flow on that network such that the capacities are all integers, but the flow contains some non-integer values.
- 4. (**Multi-source multi-sink max flow**) Consider a variant of the maximum flow problem where we allow for *multiple source vertices* and *multiple sink vertices*. All of the sources and sinks are excluded from the flow conservation constraint. Describe a simple method for solving this problem by reducing it to an instance of the ordinary problem.
- 5. (**Vertex Capacities**) The usual formulation of the max flow problem has capacities on the *edges* of the network, but it is often very useful when modeling problems to be able to also have *vertex capacities*. That is, we want to limit the amount of flow that can pass through a particular vertex. Formally, if a vertex v has capacity c(v), then we wish to enforce that the flow f satisfies

$$\sum_{v} f(u,v) \le c(v).$$

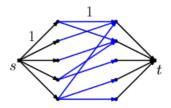
(Note that by flow conservation, this is equivalent to $\sum_{u} f(v, u) \le c(v)$.) Devise a transformation that takes as input a max flow problem with vertex capacities and produces an instance of the ordinary max flow problem whose solution corresponds to a valid solution of the original problem.

1

- 6. (**Square sums**) Given a list of n integers $r_1, \ldots r_n$ and m integers c_1, \ldots, c_m , we want to construct an $n \times m$ matrix consisting of zeros and ones whose row sums are r_1, \ldots, r_n respectively and whose column sums are c_1, \ldots, c_m respectively. Describe a solution to this problem by reducing it to an instance of maximum flow.
- 7. **(Office hours)** You are in charge of assigning TAs to 15-451's office hours. There are n TAs and m office hours slots on the calendar. The i^{th} TA has a list of which office hour slots they are available for, and also a limit c_i of how many slots they are willing to staff. Since different office hour slots have different numbers of students, each might require a different number of TAs. The j^{th} office hour slot requires d_i TAs to staff it.

Give an algorithm for finding a viable schedule of which TAs staff which recitations, or determine that it is not possible. Do so by reducing the problem to max flow.

- 8. (**Edge-disjoint Paths**) We are given a directed graph G and two vertices u and v in G. We want to find the maximum possible number of edge-disjoint paths from u to v in G, meaning any edge in G can be used by at most one path.
 - (a) Solve this problem by constructing a flow network whose max flow is the number of edge disjoint paths.
 - (b) Prove that the max flow of this network is equal to the maximum number of edge disjoint paths.
 - (c) Given a max flow in the flow network you constructed, how would you construct a maximum set of edge-disjoint paths?
- 9. **(Hall's marriage theorem)** Given a bipartite graph G = (L, R, E), we want to find the maximum matching in G. Recall from lectures that the following reduction allows us to solve this problem using maximum flow.
 - Add a new source vertex *s* and target vertex *t*. Add *unit capacity* directed edges from *s* to vertices in *L*, and from vertices in *R* to *t*. Direct edges in *E* towards *R*, make them *unit capacity* as well.
 - Consider a maximum flow in the network. Take the set of edges between *L* and *R* that are sending 1 unit of flow. These edges form a maximum matching.



For any set $S \subseteq L$, let $N(S) = \{v \in R \mid \exists u \in S, (u, v) \in E\}$ be the "neighbors" of S. Hall's Marriage theorem says: the size of the maximum matching in G equals |L| if and only if for each subset $S \subseteq L$, $|N(S)| \ge |S|$. Prove Hall's theorem using the above reduction and the max-flow min-cut theorem.

- 10. **(Kuhn's algorithm)** A popular algorithm in programming competitions for solving the Bipartite Matching problem is "*Kuhn's algorithm*". For each vertex $u \in L$, the algorithm tries to find a matching vertex $v \in R$ by either:
 - (a) Finding an unmatched adjacent vertex v and matching it, or
 - (b) Finding an already matched vertex v on the right, then recursively finding a *new match* for the vertex currently matched to v, then matching u to v.

Explain how this algorithm is actually the same as the Ford-Fulkerson-based maximum flow algorithm for the Bipartite Matching problem that we learned in class.