
15-451/651 Algorithm Design & Analysis, Spring 2024

Recitation #5

Objectives

• Practice dynamic programming algorithms (using small steps).

• Understand how to analyze the complexity of a dynamic programming algorithm.

• Understand and practice common strategies for defining subproblems, e.g.:

– Considering a prefix (first i elements) of the input (e.g. Knapsack).
– Consider a substring i . . . j of the input (e.g., Optimal BSTs in 210).
– Consider smaller values of the input parameters (e.g., Knapsack).
– Consider subtrees (Tree DP) (e.g., Max-weight independent set on a tree)
– Consider subsets of the elements of the input (e.g., TSP).
– Remember most recent decision / add more information (e.g, final vertex in TSP).

Recitation Problems

1. (Vacuums) Suppose that you are a door-to-door salesman, selling the latest innovation
in vacuum cleaners to less-than-enthusiastic customers. Today, you are planning on
selling to some of the n houses along a particular street. You are a master salesman, so
for each house i , you have already worked out the amount ci of profit that you will make
from the person in the house if you talk to them. Unfortunately, you cannot sell to every
house, since if a person sees you selling to their neighbor, they will hide and not answer
the door for you. Therefore, you must select a subset of houses to sell to such that none
of them are next to each other, and such that you make the maximum amount of money.

For example, if there are 10 houses and the profits that you can make from each of them
are 50, 10, 12, 65, 40, 95, 100, 12, 20, 30, then it is optimal to sell to the houses 1, 4, 6, 8, 10
for a total profit of $252. Devise a dynamic programming algorithm to output the max-
imum profit you can make.

(a) Define a good subproblem for your DP.
(b) Write the base cases of your recurrence.
(c) Write the recurrence cases to finish your DP recurrence.
(d) Finish the problem by explaining how to run your recurrence.
(e) What is the time bound for this DP?

1

2. (Tidying Up) You are in a room containing n objects at integer coordinates (xi , yi) for
1 ≤ i ≤ n . In the center of the room at (0, 0), you have a box in which you would like
to place all of the objects. The problem is that the objects are quite heavy, so you can
only manage to carry at most three of them at a time! The box is also heavy, so you can
not move the box. The time that it takes you to move between two points i and j is
|xi − x j |+ |yi − yj |.

Assuming that you start at position (0, 0) with the empty box, what is the minimum
amount of time required for you to place all of the objects into the box? Give an al-
gorithm for this problem that runs in O (2n ·n 2) time.

Hints:

• Any solution to this problem will essentially be a bunch of trips away from the box
to fetch items, and then back to the box to put them away. Does the relative order-
ing of which trip happens first matter? [No.]

2

3. (Cheapest Tree Separation) There are N cities, numbered from 1 through N , connected
by N − 1 roads, forming a weighted tree. Countries A and B each occupy a set of cities
(no city is occupied by both countries, and some cities may not be occupied at all).

To stop fighting between the two countries, you want to destroy roads such that no city
occupied by country A is connected to a city in country B . Destroying a road of length
x costs x dollars. What is the minimum cost required? Given a linear time algorithm.

3

4. (Number of Increasing Partitions (Optional)) We are given an array A = [A1, A2, . . . , An].
How many ways are there to partition A into contiguous, non-overlapping subarrays
such that the maximum element in each subarray are nondecreasing from left to right?

For example, if A = [1, 2, 2, 1, 3, 2, 1] then the partition [1, 2], [2, 1], [1, 3, 2, 1] is valid because
the maximum element of each subarray is 2, 2, 3 and these are nondecreasing from left
to right. However, the partition [1, 2, 2, 1, 3], [2, 1] is NOT a valid partition because the
maximum of the first subarray (3) is greater than the maximum of the second subarray
(2).

(a) Define a set of subproblems to which we can apply dynamic programming.

(b) Give a recurrence relation with base cases that show how to compute the value of
a subproblem

(c) Show that your dynamic programming solution can be evaluated in O (n 2) time,
then show that it can be improved to O (n) time

4

