
15-451/651 Algorithm Design & Analysis, Spring 2024

Recitation #11

Objectives

• Practice designing and reasoning about algorithms in the streaming model

• Understand the objective of an online algorithm, how to create one, and how to bound its
competitive ratio.

Recitation Problems

1. (Plausible Majority Elements) The ϵ-heavy-hitters algorithm guarantees that it will out-
put all elements e ∈ Σ such that countt (e) > ϵt if they exist, but makes no guarantees
whatsoever about the sorts of false positives it may emit. Suppose for example that we
want to find the majority element (aka ϵ = 1

2).

(a) Show that it is possible for the ϵ-heavy-hitters algorithm to output an element which
appears only once in an arbitrarily large stream.

(b) Come up with a one-pass streaming algorithm that guarantees it will output the
majority element if there is one, but will never output an element that appears less
than a third of the time (an implausible majority element).

Hint: Your algorithm might need to output more than one element.

(c) What is your algorithm’s asymptotic space complexity as a function of t and |Σ|?

(d) Generalize your algorithm to guarantee it will output all elements e such that countt (e)>
ϵ1t but never output an element e ′ such that countt (e ′) < ϵ2t for ϵ1 > ϵ2. What is
its asymptotic space complexity?

1

2

2. (Online Paging) In the paging problem, we have a disk with N pages, and a cache with
space for k pages for some k < N . A sequence of page requests are made, where each
request is for a particular page i , with 1≤ i ≤N , which requires us to load that page into
the cache. If the page is already in the cache, the request is free (it costs 0). If the page
is not already in the cache (this is called a miss), we must pay a cost of 1 to load it in,
but we must also evict one of the current k pages in the cache to make space for it. We
assume that the cache can start with any pages already in it.

The goal is to minimize the number of misses in a sequence of requests, so for any algo-
rithm trying to do this, the important question is which page to evict.

Here are two algorithms that solve this question:

• Least-Recently-Used (LRU): Evict the least recently used page. Start out the cache with
pages 1, 2, . . . , k .

• Longest-Forward-Distance (LFD): Evict the page whose next request is farthest in the
future. Start out the cache with the first k unique pages in the request sequence.

LRU is an online algorithm because it only uses information from the past, but LFD is
not, since it requires knowing the future (it is an offline algorithm). In fact, LFD can be
shown to be an optimal offline algorithm for this problem. Now we want to show that
LRU is k -competitive.

(a) Say we have k = 3, N = 4, and the request sequence is 1, 2, 3, 2, 4, 3, 4, 1, 2, 3, 4. How
does LRU and LFD perform?

3

(b) Now, we will prove why we cannot do better than a competitive ratio of k with LRU
by proving something stronger. Show that you cannot do better than a competitive
ratio of k with any deterministic online algorithm.

Hint: If we set N = k + 1, what request sequence would be the worst case for any
online algorithm? How does this compare to LFD, which can see future requests at
any time?

4

(c) Now, we will show that LRU can indeed achieve a competitive ratio of k . Define the
notion of a phase as a contiguous subsequence of requests that contain k distinct
requests, such that the first request of a phase is distinct from all requests in the
previous phase. Consider a series of requests that has m phases, with the first phase
starting on the first page fault.

Notice that LRU incurs at most k page faults in each phase, and thus the total num-
ber of page faults is at most k ·m , since the first phase starts on the first page fault.
Now, prove that any algorithm must pay a cost of at least m in total, which shows
that LRU is k -competitive.

Hint: For any pair of phases i and i + 1, look at the sequence from the second re-
quest of phase i to the first request of phase i +1 inclusive.

5

6

3. (Randomized Paging (Optional advanced problem)) We just proved that LRU has a
competitive ratio of k for the online paging problem, and also that k is a lower bound
for any deterministic paging algorithm, so LRU is optimal. So, are we done with paging?
No! We can still design an algorithm with a much better competitive ratio by taking ad-
vantage of randomization! This is an example of a problem where randomization is not
just a convenience, but an actual necessity to break through lower bounds!

(a) Here, we present a randomized algorithm with a competitive ratio of just O (log k).

Marking Algorithm

i. The initial state is pages 1, ..., k in fast memory. Start with these pages all marked.

ii. When a page is requested:

• If it’s in fast memory already, mark it.

• If not, throw out a random unmarked page. (If all pages in fast memory are
marked, unmark everything first. For analysis purposes, we will call this the
start of a “phase." Then, bring in the page and mark it.

We can think of this as a 1-bit randomized LRU, where marks represent “recently
used” vs “not recently used”. When it needs to evict an element, instead of evicting
the least-recently used, it evicts a random element that was not among the most
recently used ones. We will analyze the special case where N = k + 1. Prove that
when the marking algorithm is run on a sequenceσ of accesses,

E[M AR K I N G (σ)]
O P T (σ)

≤Hk

where Hk := 1+1/2+ ...+1/k is the k t h harmonic number.

7

(b) (Extra advanced, extra optional problem) Prove that Ω(log k) is a lower bound for
the competitive ratio of any randomized paging algorithm.

8

9

