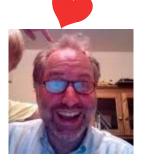
15451 Fall 2022

Mechanism Design

a.k.a inverse game theory

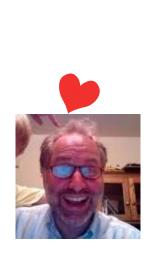
Elaine Shi

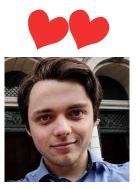
to give away



Maximizes social welfare

= sum of happiness





Let's do this in class

On a scale of **0-5** how much do you like

Problem:

Everyone is incentivized to report 5

i.e., mechanism incentivizes lying

How do I give away

such that

Maximize social welfare

Incentivize truthful bidding

Mechanism Design

a.k.a. inverse game theory

Maximize social welfare

Incentivize truthful bidding

Suppose we can charge \$\$

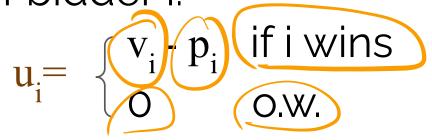
- Everyone bids
- Highest bidder wins
- Winner pays its bid

"1st price auction"

- Everyone bids
- Highest bidder wins
- Winner pays its bid

- v; true value of i-th bidder
- b_i: i-th bid
- Allocation rule: x(b) where (b₁...b_n)
- Payment rule: $p(b) \rightarrow (p_1) \dots (p_n)$ Pi : payment of the ith bidder

- v: true value of i-th bidder
- b_i: i-th bid
- p_i: payment of bidder i
- Utility of bidder i:



Example:

1st price auction: anyone who bids honestly has utility 0

Maximize social welfare:

give to whoever has the highest true value

Maximize social welfare:

give to whoever has the highest true value

Social welfare = v_{i*} + p_{i*} + p_{i*} = v_{i*} where i* = winner

Does 1st price auction incentivize truthful bidding?

- Everyone bids
- Highest bidder wins
- Winner pays its bid

Does 1st price auction incentivize truthful bidding?

Incentivized to underbid

Example:

- My true value = 10
- I know that the 2nd highest bidder bids 9

What should I do?

2nd price auction a.k.a. Vickrey auction

Highest bidder wins

9 8 5 1

Winner pays 2nd highest bid

Winner pays 2nd highest bid

Claim: 2nd price auction is dominant-strategy incentive-compatible, i.e.,

Claim: 2nd price auction is dominant-strategy hid vector for all incentive-compatible, i.e.,

for any valuations v_1, v_2, \ldots, v_n , for any player i, for any bid vector \mathbf{b}_{-i} of all other players, and any v'_i , it when the players $u_i(\text{Vickrey}(v_i, \mathbf{b}_{-i})) \geq u_i(\text{Vickrey}(v'_i, \mathbf{b}_{-i}))$

where (v'_i, \mathbf{b}_{-i}) means letting everyone else's bids be \mathbf{b}_{-i} and let the i-th bid be v'_i

Even after seeing others' bid, I still want to bid truthfully

for any valuations v_1, v_2, \ldots, v_n , for any player i, for any bid vector \mathbf{b}_{-i} of all other players, and any v'_i ,

$$u_i(\text{Vickrey}(v_i, \mathbf{b}_{-i})) \ge u_i(\text{Vickrey}(v_i', \mathbf{b}_{-i}))$$

where (v'_i, \mathbf{b}_{-i}) means letting everyone else's bids be \mathbf{b}_{-i} and let the i-th bid be v'_i

Even after seeing others' bid, I still want to bid truthfully also called an ex-post Nash equilibrium

for any valuations v_1, v_2, \ldots, v_n , for any player i, for any bid vector \mathbf{b}_{-i} of all other players, and any v'_i ,

$$u_i(\text{Vickrey}(v_i, \mathbf{b}_{-i})) \ge u_i(\text{Vickrey}(v_i', \mathbf{b}_{-i}))$$

where (v'_i, \mathbf{b}_{-i}) means letting everyone else's bids be \mathbf{b}_{-i} and let the i-th bid be v'_i

Claim: 2nd price auction is dominant-strategy incentive-compatible

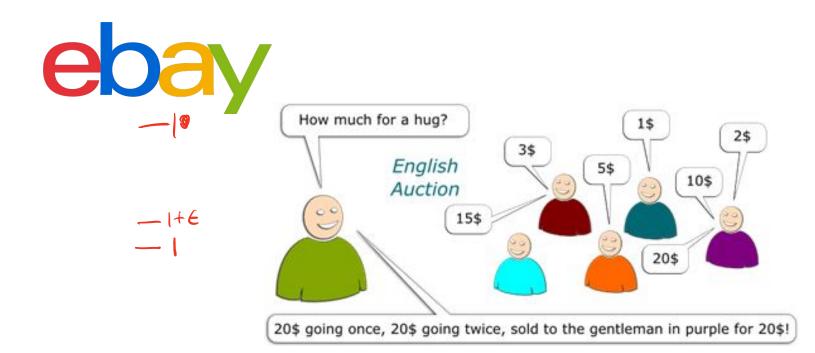
Fix an arbitrary player i, and let b* be the highest bid among b-i Case 1: Vi > b*: it i bids truthfully, it util is Vi-6*

if i bids anything above b*, its util is still Vi-6*

it i bids b*, then its util is either Ni-6* or o

it i bids cb*, then its util is o Case 2: Ni=b*: its util =0, it doesn't care Case 3: Vi Cb : it i bids truthfully, util=0, itibids >b, util <0

2nd price auction in the real world



Multiple identical items, say 2 items

Multiple identical items, say 2 items

Top 2 bidders are winners. Top bidder pays 2nd price.
2nd top bidder pays 3rd price.

> Is this dominant-strategy incentive compatible?

Second try

Top 2 bidders are winners.
Both winners pay 3rd price.

Is this dominant-strategy incentive compatible?

Vickrey-Clarke-Groves (VCG) Auction

Vickrey-Clarke-Groves (VCG) Auction

A: set of alternatives (or "allocations") Usons Rooms A: set of all possible perfect matchings

- v_i : $A \to \mathbb{R}_{\geq 0}$: maps allocations to valuations $v_i(X) = 6 \qquad v_i(X) = 5 \cdots$

set of alternatives (or "allocations")

 $u_i(a, p)$: utility of user i, $u_i(a, p) = v_i(a) - p$ SW(a): social welfare $SW(a) = \sum_i v_i(a)$

 $v_i: A \to \mathbb{R}_{\geq 0}$: maps allocations to valuations

Example

Direct revelation mechanism

Everyone reveals their true values
 v = (v₁, v₂,... v_n)

- Allocation rule: f(v) = (a) e A
- Payment rule: $p(v) = (p_1, ... p_n)$

A direct revelation (f, p) mechanism is incentive compatible iff

incentive compatible in

for every $\mathbf{v} = (v_1, \dots, v_n)$, every i, every v'_i , we have

$$v_i(f(\mathbf{v}) - p_i(\mathbf{v})) \geq v_i(f(v_i', \mathbf{v}_{-i})) - p_i(v_i', \mathbf{v}_{-i})$$
when it reports when it misreports
$$\text{the fully}$$

A direct revelation (f, p) mechanism is incentive compatible iff

 $v_i(f(\mathbf{v})) - p_i(\mathbf{v}) \ge v_i(f(v_i', \mathbf{v}_{-i})) - p_i(v_i', \mathbf{v}_{-i})$

incentive compatible iii

for every $\mathbf{v} = (v_1, \dots, v_n)$, every i, every v'_i , we have

Claim: There is a mechanism that

• Is dominant-strategy incentive compatible

Maximizes social welfare if everyone bids truthfully

Claim: There is a mechanism that

• Is dominant-strategy incentive compatible

Maximizes social welfare if everyone bids truthfully

"The VCG auction"

1st try

- f(v) = the allocation that maximizes social welfare w.r.t v
- p_i(v) = sum of everyone else's reported valuations

i.e.,
$$p_i(\mathbf{v}) = -\sum_{j \neq i} v_j(f(\mathbf{v}))$$

Analysis

If player i reports truthfully, then

$$u_i = v_i(f(\mathbf{v})) + \sum_{j \neq i} v_j(f(\mathbf{v})) = \sum_j v_j(f(\mathbf{v})) = \max_a \sum_j v_j(a)$$

Analysis

If player i reports truthfully, then

$$u_i = v_i(f(\mathbf{v})) + \sum_{j \neq i} v_j(f(\mathbf{v})) = \sum_j v_j(f(\mathbf{v})) = \max_a \sum_j v_j(a)$$

What if player i misreports v';?

Analysis

If player i reports truthfully, then

$$v = v \cdot (f(\mathbf{v})) + \sum v \cdot (f(\mathbf{v})) = \sum v \cdot (f(\mathbf{v})) = \max$$

 $u_i = v_i(f(\mathbf{v})) + \sum v_j(f(\mathbf{v})) = \sum v_j(f(\mathbf{v})) = \max_a \sum v_j(a)$

If player i misreports v', then

Misreporting does not help

If player i reports truthfully, then

$$u_i = v_i(f(\mathbf{v})) + \sum_{j \neq i} v_j(f(\mathbf{v})) = \sum_j v_j(f(\mathbf{v})) = \max_a \sum_j v_j(a)$$

If player i misreports v', then

$$u_i = v_i(f(\mathbf{v}')) + \sum_{j \neq i} v_j(f(\mathbf{v}')) = \sum_j v_j(f(\mathbf{v}')) \le \max_a \sum_j v_j(a)$$

Problem: auctioneer to give money to bidders

Add to each $p_i(v)$ something that depends only on \mathbf{v}_{-i}

VCG -- general version

• f(v) = the allocation that maximizes social welfare w.r.t **v**

•
$$p_i(\mathbf{v}) = h_i(\mathbf{v}_{-i}) - \sum_{j \neq i} v_j(f(\mathbf{v}))$$

How to choose $h_i(\mathbf{v}_i)$

Auctioneer does not pay

Every bidder has non-negative utility

$$h_i(\mathbf{v}_{-i}) = \max_a \sum_{j \neq i} v_j(a)$$

VCG -- standard version

• f(v) = the allocation that maximizes social welfare w.r.t v

•
$$p_i(\mathbf{v}) = \max_a \sum_{j \neq i} v_j(a) - \sum_{j \neq i} v_j(f(\mathbf{v}))$$

VCG -- standard version

• f(v) = the allocation that maximizes social welfare w.r.t **v**

•
$$\mathbf{p}_{i}(\mathbf{v}) = \max_{a} \sum_{j \neq i} v_{j}(a) - \sum_{j \neq i} v_{j}(f(\mathbf{v}))$$

$$= v_i - \left(\sum_j v_j(f(\mathbf{v})) - \max_a \sum_{j \neq i} v_j(a)\right)$$

Example

2nd price auction is a special case of VCG auction