
15-451/651: Design & Analysis of Algorithms February 8, 2022
Lecture #7: Fingerprinting and String Matching last changed: February 7, 2022

In today’s lecture, we will talk about randomization and hashing in a slightly different way. In
particular, we use arithmetic modulo prime numbers to (approximately) check if two strings are
equal to each other. Building on that, we will get an randomized algorithm (called the Karp-
Rabin fingerprinting scheme) for checking if a long text T contains a certain pattern string P as a
substring.

1 How to Pick a Random Prime

In this lecture, we will often be picking random primes, so let’s talk about that. (In fact, you do
this when generating RSA public/private key pairs.)

How to pick a random prime in some range {1, . . . ,M}? The answer is easy.

• Pick a random integer X in the range {1, . . . ,M}.

• Check if X is a prime. If so, output it. Else go back to the first step.

How would you pick a random number in the prescribed range? Also easy. Pick a uniformly random
bit string of length blog2Mc + 1. (We assume we have access to a source of random bits.) If it
represents a number ≤ M , output it, else repeat. The chance that you will get a number ≤ M is
at least half, so in expectation you have to repeat this process at most twice.

How do you check if X is prime? You can use the Miller-Rabin randomized primality test (which
may err, but it will only output “prime” when the number is composite with very low probability).
There are other randomized primality tests as well, see the Wikipedia page. Or you can use the
Agrawal-Kayal-Saxena primality test, which has a worse runtime, but is deterministic and hence
guaranteed to be correct.

2 How Many Primes?

You have probably seen a proof that there are infinitely many primes. Here’s a different question
that we’ll need for this lecture.

For positive integer n, how many primes are there in the set {1, 2, . . . , n}?

Let there be π(x) primes between 0 and x. One of the great theorems of the 20th century was the
Prime Number theorem which proved that

lim
n→∞

π(x)

x/(lnx)
= 1.

And while this is just a limiting statement, an older result of Chebyshev (from 1848) says that for
n ≥ 2,

π(n) ≥ 7

8

n

lnn
= (1.262 . . .)

n

log2 n
>

n

log2 n

As a bonus problem on HW#3, you can prove a slightly weaker version of this bound of n
2 log2 n

.

1

http://en.wikipedia.org/wiki/Miller-Rabin_primality_test
http://en.wikipedia.org/wiki/AKS_primality_test
http://en.wikipedia.org/wiki/Prime_number_theorem
http://mathworld.wolfram.com/PrimeNumberTheorem.html

Here are two consequences of this theorem. The first is that a random integer between 1 and n is
a prime number with probability at least 1

log2 n
. Put another way, we also get the following useful

fact:

Fact 1 If we want at least k ≥ 4 primes between 1 and n, it suffices to have n ≥ 2k log2 k.

Proof: Just plugging in, we get π(2k log2 k) ≥ 2k log2 k
log2(2k log2 k)

≥ 2k log2 k
log2 2+log2 k+log2 log2 k

≥ k. �

2.1 Tighter Bounds

The following even tighter set of bounds were proved by Pierre Dusart in 2010. For all x ≥ 60184
we have:

x

lnx− 1.1
> π(x) >

x

lnx− 1

Because this is a two-sided bound, it allows us to deduce a lower bound on the number of primes in
a range. For example, the number of 9-digit prime numbers (i.e. primes in the range [108, 109− 1])
is

π(109 − 1)− π(108 − 1) >
109 − 1

ln(109 − 1)− 1
− 108 − 1

ln(108 − 1)− 1.1
= 44928097.3 . . .

From this we can infer that a randomly generated 9 digit number is prime with probability at least
0.049920 Thus, the random sampling method would take at most 21 iterations in expectation
to find a 9-digit prime.

3 The String Equality Problem

Here’s a simple problem: we’re sending a Mars lander. Alice, the captain of the Mars lander,
receives an N -bit string x. Bob, back at mission control, receives an N -bit string y. Alice knows
nothing about y, and Bob knows nothing about x. They want to check if the two strings are the
same, i.e., if x = y. 1

One way is for Alice to send the entireN -bit string to Bob. ButN is very large. And communication
is super-expensive between the two of them. So sending N bits will cost a lot. Can Alice and Bob
share less communication and check equality?

If they want to be 100% sure that x = y, then one can show that fewer than N bits of communication
between them will not suffice. But suppose we are OK with being correct with probability 0.9999.
Formally, we want a way for Alice and Bob to send a message to Bob so that, at the end of the
communication:

• If x = y, then Pr[Bob says equal] = 1.

• If x 6= y, then Pr[Bob says unequal] = 1− δ.

Here’s a protocol that does almost that.

1. Alice picks a random prime p from the set {1, 2, . . . ,M} for M = d2 · (5N) · log2(5N)e.

2. She sends Bob the prime p, and also the value hp(x) := x mod p.

1E.g., this could be the latest update to the lander firmware, and we want to make pretty sure the file did not get
corrupted in transition.

2

3. Bob checks if hp(x) = y mod p. If so, he says equal else he says unequal.

For now, let’s not worry about where the particular value of M came from: it will arise naturally.
Let’s see how this protocol performs.

Lemma 2 If x = y, then Bob always says equal.

Proof: Indeed, if x = y, then x mod p = y mod p. So Bob’s test will always succeed. �

Lemma 3 If x 6= y, then Pr[Bob says equal] ≤ 0.2.

Proof: Consider x and y and N -bit binary numbers. So x, y < 2N . Let D = |x − y| be their
difference. Bob says equal only when x mod p = y mod p, or equivalently (x − y) = 0 mod p.
This means p divides D = |x − y|. In words, the random prime p we picked happened to be a
divider of D. What are the changes of that? Let’s do the math.

The difference D is a N -bit integer, so D ≤ 2N . So D can be written (uniquely) as D = p1p2 · · · pk,
each pi being a prime, where some of the primes might repeat2. Each prime pi ≥ 2, so D =
p1p2 · · · pk ≥ 2k. Hence k ≤ N : the difference D has at most N prime divisors. The probability
that the randomly chosen prime p is one of them is

N

number of primes in {1, 2, . . . ,M}
.

We want this to be at most 1/5. I.e., we would like that the number of primes in {1, 2, . . . ,M} is at
least 5N . But Fact 1 says that choosing M ≥ 10N log2 5N will give us at least 5N primes. Hence

Pr[Bob says equal and hence errs] ≤ N

number of primes in {1, 2, . . . ,M}
≤ N

5N
≤ 1

5
.

�

3.1 Reducing the Error Probability

If you don’t like the probability of error being 20%, there’re two ways to reduce the probability of
error.

Approach #1: Have Alice choose a random prime from a larger set. For some integer s ≥ 1,
if we choose M = 2 · sN log2(sN), then the arguments above show that the number of primes in
{1, . . . ,M} is at least sN . And hence the probability of error is 1/s. Now choose any s large
enough.

Approach #2: Just have Alice repeat this process 10 times independently, with Bob saying equal

if and only if all in 10 repetitions, the test passes. The chance that he will make an error (i.e., say
equal when x 6= y) is only

(1/5)10 =
1024

1010
≤ 0.000001.

In general, if we repeat R times, we get the probability of error is at most

(1/5)R.

2This unique prime-factorization theorem is known as the fundamental theorem of arithmetic.

3

https://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic

3.2 Why did Alice not just send x over to Bob?

Näıvely, Alice could have sent x over to Bob. That would take N bits. Now she sends the prime
p, and x mod p. That’s two numbers at most M = 10N log2 5N . The number of bits required for
that: 2 log2M = 2 log2(10N log2 5N)) = O(logN).

To put this in perspective, suppose x and y were two copies of all of Wikipedia. Say that’s about
25 billion characters. Say 8 bits per character, so N ≈ 2 · 1011 bits. Whereas our approach, even
with repeating things 10 times, sent over 10 · 2 log2(10N log2 5N)) ≤ 924 bits. That’s a lot less
communication!

4 The Karp-Rabin Algorithm (a.k.a. the “Fingerprint” Method)

Let’s use this idea to solve a different problem. In the string matching problem, we are given

• A text T , of length m.

• A pattern P , of length n.

The goal is to output all the occurrences of the pattern P inside the text T . E.g., if T =
abracadabra and P = ab then the output should be {0, 7}.
There are many ways to solve this problem, but today we will use randomization to solve this
problem. This solution is due to Karp and Rabin.3 The idea is smart but simple, elegant and
effective—like in many great algorithms.

4.1 The Karp-Rabin Idea

Think about the hash function hp(x) = x mod p, for x ∈ {0, 1}n. Now look at the string x′

obtained by dropping the leftmost bit of x, and adding a bit to the right end. E.g., if x = 0011001

then x′ might be 0110010 or 0110011. If I told you hp(x) = z, can you compute hp(x
′) fast?

Suppose x′lb is the lowest-order bit of x′, and xhb be the highest order bit of x. Then

value of x′ = 2(value of x− xhb · 2n−1) + x′lb

Remember that hp(a+ b) = (hp(a) + hp(b)) mod p, and hp(2a) = 2hp(a) mod p. So

hp(x
′) = (2hp(x)− xhb · hp(2n) + x′lb) mod p.

That’s two function computations to compute hp(x) and hp(2
n), three arithmetic operations modulo

p, and one more residue modulo p.

4.2 How to use this idea for String Matching

To keep things short, let Ta...b denote the string from the ath to the bth positions of T , inclusive.
So the string matching problem is: output all the locations a ∈ {0, 1, . . . ,m− n} such that

Ta...a+(n−1) = P.

3Again, familiar names. Dick Karp is a professor of computer science at Berkeley, and won the Turing award in
1985. Among other things, he developed two of the max-flow algorithms you saw, and his 1972 paper showed that
many natural algorithmic problems were NP complete. Michael Rabin is professor at Harvard; he won the Turing
award in 1976 (jointly with CMU’s Dana Scott). You may know him from the popular Miller-Rabin randomized
primality test (the Miller there is our own Gary Miller); he’s responsible for many algorithms in cryptography.

4

Here’s the algorithm:

1. Pick a random prime p in the range {1, . . . ,M} for a M = d2sn log2(sn)e for a value of s
we’ll choose later.

2. Compute hp(P) and hp(2
n), and store these results.

3. Compute hp(T0...n−1), and check if it equals hp(P). If so, output match at location 0.

4. For each i ∈ {0, . . . ,m− n}, compute hp(Ti+1...i+n) using hp(Ti...i+n−1).
If hp(Ti+1...i+n) = hp(P), output match at location i+ 1.

Clearly, we’ll never have a false negative (i.e., miss a match) but we may erroneously output location
that are not matches (have a false positive). Let’s analyze the error probability, and the runtime.

4.2.1 Probability of Error

We do m different comparisons, each has a probability 1/s of failure. So, by a union bound, the
probability of having at least one false positive is m/s. Hence, setting s = 100m will make sure we
have a 1

100 chance of even a single mistake.

This means we set M = (200 ·mn) log2(200 ·mn). Which requires ≤ log2M + 1 = O(logm+ log n)
bits to store. And hence our prime p is also at most O(logm+ log n) bits.4

4.2.2 Running Time

Let’s say we can do arithmetic and comparisons on O(logM)-bit numbers in constant time. (See
the footnote above about why this is reasonable.) And let’s not worry about the time to pick a
random prime for now.

• Computing hp(x) for n-bit x can be done in O(n) time. So each of the hash function compu-
tations in Steps 2 and 3 take O(n) time.

• Now, using the idea in Section 4.1, we can compute each subsequent hash value in O(1) time!
So iterating over all the values of i takes O(m) time.

That’s a total of O(m+ n) time! And you can’t do much faster, since the input itself is O(m+ n)
bits long.

4.3 Extensions and Connections

There are other (deterministic) fast ways of solving the string matching problem we mentioned
above. See, e.g., the Knuth-Morris-Pratt algorithm, and suffix trees. (See our 15-451 notes from
another semester on these two topics.) The advantage of the Karp-Rabin approach is not only
the simplicity, but also the extendability. You can, e.g., solve the following 2-dimensional problem
using the same idea.

2-dimensional pattern matching. Given a m1 ×m2-bit rectangular text T , and a
n1 × n2-bit pattern P (where ni ≤ mi), find all occurrences of P inside T . Show that
you do this in O(m1m2) time, where we assume that you can do modular arithmetic
with integers of value at most poly(m1m2) in constant time.

4If we you do the math, and say m,n ≥ 10, then log2 M ≤ 4(log2 m + log2 n). Now, just for perspective, if we
were looking for a n = 1024-bit phrase in Wikipedia, this means the prime p is only 4(log2 238 + log2 210) ≤ 192 bits
long.

5

https://en.wikipedia.org/wiki/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm
https://en.wikipedia.org/wiki/Suffix_tree
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15451-f14/www/lectures/lec19/suffix-trees.pdf

	How to Pick a Random Prime
	How Many Primes?
	Tighter Bounds

	The String Equality Problem
	Reducing the Error Probability
	Why did Alice not just send x over to Bob?

	The Karp-Rabin Algorithm (a.k.a. the ``Fingerprint'' Method)
	The Karp-Rabin Idea
	How to use this idea for String Matching
	Probability of Error
	Running Time

	Extensions and Connections

