L ecture 6: The Data
Stream Model

Elaine Shi

(Slides by David Woodruff)

Data Streams

+ A stream is a sequence of data, that is too large to be stored in available
memory

- Examples

- Internet search logs

O Sensor Node

- Network Traffic

O Q - Gateway
P Sensor Node

+ Sensor networks

- Scientific data streams (astronomical, genomics, physical simulations)..

Streaming Model

v

* Stream of elements a,, ..., 3, ... each from an alphabet X and
taking b bits to represent

* Single or small number of passes over the data

Streaming Model

v

* Stream of elements a,, ..., 3, ... each from an alphabet X and
taking b bits to represent

* Single or small number of passes over the data

* Almost all algorithms are randomized and approximate
» Usually necessary to achieve efficiency
* Randomness is in the algorithm, not the input

* Goals: minimize space complexity (in bits), processing time

Example Streaming Problems

* Letay.q =< ay, ..., a; > be the first t elements of the stream

* Suppose ay, ..., a; are integers in {(2b+1,-2b+2,..,-1,0,1, 2, ..., 2P-1}
* Example stream: 3,1, 17, 4, -9, 32, 101, 3,-722, 3, 900, 4, 32

* How many bits do we need to maintain f(aj1.q)= Xi=1 tai?

Example Streaming Problems

* Letay,q =< ay, ..., a¢ > be the first t elements of the stream

b b';t"s .'y]uw&ff

* Suppose aj, ..., a; are integersin {-2P +1,-2P +2,..,-1,0,1, 2, ..., 2P-1} (bt - 5‘5"1
* Example stream: 3,1, 17, 4, -9, 32, 101, 3,-722, 3, 900, 4, 32

* How many bits do we need to maintain f(af;.q)= Xi=1 +ai?
* Outputs on example: 3, 4, 21, 25, 16, 48, 149, 152, -570, -567, 333, 337, 379, ...
* O(b +logt)

RS

Letaj;.q) =< ay, ..., a; > be the first t elements of the stream

Suppose aq, ..., a; are integers in {(2b+1,-2b+2,..,-1,0,1, 2, .., 2b-1}
* Example stream: 3,1, 17, 4, -9, 32, 101, 3,-722, 3, 900, 4, 32

How many bits do we need to maintain f(aj;.q)= Xj=1 _¢ai?

* Outputs on example: 3, 4, 21, 25, 16, 48, 149, 152, -570, -567, 333, 337, 379, ...

* O(b +logt)

How many bits do we need to maintain f(af;.;j)= max a;?
el W Q (b)

Let aj1.y) =< ay, ..., a¢ > be the first t elements of the stream

Suppose aq, ..., a; are integers in {—2b + 1, 2b 42, .,-1,0,1,2, .. 2b—1}
* Example stream: 3,1, 17, 4, -9, 32, 101, 3,-722, 3, 900, 4, 32

How many bits do we need to maintain f(aj1.q)= Xi=1 . ¢ai?

* Outputs on example: 3, 4, 21, 25, 16, 48, 149, 152, -570, -567, 333, 337, 379, ...

* O(b +logt)

How many bits do we need to maintain f(afq.¢)= _rqaxtai?
i=1,..,

* Outputs on example: 3, 3,17, 17,17, 32, 101, 101, 101, 101, 900, 900, 900, ...
* O(b) bits

Example Streaming Problems

* The median of all the numbers we’ve stored so far
* Example stream: 3,1, 17,4, -9, 32,101, 3,-722, 3,900, 4, 32
* Median: 3,1,3,3,3,3,4,3, ..
* This seems harder...

Example Streaming Problems

* The median of all the numbers we’ve stored so far
* Example stream{ 3,/1,/17, 4, -9, 32, 101@ 722, 3,900, 4, 32

* Median: 3,1, 3,3,3,3,4,3,.
* This seems harder...

* The number of distinct elements we’ve seen so far?
* Qutputs on example: 1,2,3,4,5,6 8,9909,..

* The median of all the numbers we’ve stored so far
* Example stream: 3,1, 17, 4, -9, 32, 101, 3,-722, 3, 900, 4, 32
* Median: 3,1, 3,3,3,3,4,3, ..
* This seems harder...

* The number of distinct elements we’ve seen so far?
* Qutputs on example: 1,2,3,4,5,6,7,7,8,8,9,9,9, ...

* The elements that have appeared at least an e-fraction of the time?
These are the e-heavy hitters -
* Cover today

- Internet router may want to figure out which IP connections
are heavy hitters, e.g., the ones that use more than .01% of your
bandwidth

- Or maybe the router wants to know the median (or 90-th
percentile) of the file sizes being transferred

- Hashing is a key technique

Finding e-Heavy Hitters

@. the multiset of items at time t, sq Sy = @, S; = {a1},
W{l ..,t}such thata; = e}|

*e€lisane heavy hltter-lfw&@

* Given € > 0, can we output €-heavy hitters?

/1 - .
* Let’s output a set of siz gl ntaining all the e-heavy hitters

* Note: can output “false positives®but not allowed to output “false negatives’, i.e.,
not allowed to miss any heavy hitter, but could output non-heavy hitters

Finding e-Heavy Hitters

* At time 5, the elemen the only 1/3-heavy hitter
* At time 11, both B and D are 1/3-heavy hitters

» At time 15, there is no 1/3-heavy hitter
* At time 16, only E is a 1/3-heavy hitter

Can’t afford to keep counts of all items, so how to maintain a short
summary to output the e-heavy hitters?

=
Finding a Majority Element

* First find a .5-heavy hitter, thatdis, a majority element:

when element a;/arrives

if (counter ==
memory <—and counter @

else o
i memary
‘counte@
else
counter

(discard/a;
* At end of the stream, return the element in memory
S=—_——— _~

31211

Memory = 3, Count =1

Memory = 3, Count :C)

31211

Memory = 3, Count =
Memory =3, Count =0

Memory @Count =@%

31211

Memory = 3, Count =
Memory =3, Count =0
Memory =2, Count =1
Memory ==;, Count @

5/

31211

Memory = 3, Count =

Memory =3, Count =0
Memory =2, Count =1
Memory =2, Count=0

Memory @Count O

O |

Analysis of Finding a Majority Element

* If there is no majority element, we output a false positive, which is OK
' -

* If there is a majority element, we will output it. Why?
Al

—_—

—

3| llz | | Count
B 12670

= \ \ \L 2 f
@’_{D&@ @—9@%%)

If there is no majority element, we output a false positive, which is OK

If there is a majority element, we will output it. Why?

When we discard an element a;, we throw away a different element

When we throw away a cony of a maiority element, we throw away another element

* Either majority element is in memory, or majority element arrives in stream but
some other item is in memory

Majority element is more than half the total number of elements, so can’t throw
away all of them

Extending to e-Heavy Hitters é}

N

Setk = E] -1
Array T[1, ..., k], where each location can hold one element from X

Array C[1, ..., k], where each location can hold a non-negative integer
C[i] « 0 and T[i] «1 for all i

If there isj € {1, 2, ..., Kk} such that a; = TJ[j], then C[j] + +
Else if some counter C[j] = 0 then/T|j] < a; and C[j] « 1

Else decrement all counters by 1 (and discard element a;)

est.(e) =[C[j] if e == T[j] for some j, and est.(e) = O)otherwise

* Lemma: 0 </ count(e) — est (e) < m <e-t

* Proof: count(e) = est.(e) since we never increase a counter for e unless we see e

If we don’t increaselest,(e) by 1 for an update to e, we decrement k counters and
discard the current update to e

- Either e is in memory and we decrement its count, or e is a stream update and we
discardit

So we drop k+1 distinct stream updates, but thpm are. t total updates, so we won't
increase est(e) by 1, when we should, at mg ,t - < e ttimes

Heavy Hitters Guarantee

* At any time t, all e-heavy hitters e are in the arra@\/hy?

T

* At any time t, all e-heavy hitters e are in the array T. Why?
* For an e-heavy hitter e, we have count.(e) > € -t

* But est;(e) = count.(e) -t €t

* Soest.(e) >0/)soejsinarray T

* Space is O(k (iog(|2]) + log t)) = O(1/ €) (log(|Z|) + log t) bits

» Suppose we can delete elements e that have already appeared
* Example: (add, A), (add, B), (add, A), (del, B), (del, A), (add, C)

* Multisets at different times
So =0,S; ={A},S, = {A,B},S; = {A,A/B},S, = {A A}, S = {A},
S¢ ={A,C}, ...

* “active” set S; has size/|S;| = Y.eex'count,(e) and can grow and shrink

Data Structure for Approximate Counts

* Query “What is count(e)?”, should output e ﬁ e) with: Q.o

Pr[Iestt(e) — counti(e)| < >1-06
« Want space close to our previous O(1/ €) (log(|Z|) + log t)

* Query “What is count(e)?”, should output est(e) with:
Pr[|est.(e) — count(e)| < €|S{|] =1—-6

* Want space close to our previous O(1/ €) (log(|Z|) + log t) bits
e Leth!Z » {0,1,2, ...,k — 1} be a hash function (will specify later)
* Maintain an array A[O, 1, ..., k-1] to store non-negative integers

when update a; arrives:
if a; = (add, e) then Alh(e)] + +
else a, = (del,e), and A[h(e)] — —

* est;(e) = Al[h(e)]

Data Structure for Appro><|mate Counts

Data Structure for Approximate Counts

* Alh(e)] = Y ez counti(e’) - 1(h(e’) = h(e)), where 1(condition)
evaluates to 1 if the condition is true, and evaluates to 0 otherwise

« Alh(e)] =/count.(e) +), count (e") - 1(h(e") = h(e)),

e'l£e

* Alh(e)] = X ez counti(e’) - 1(h(e’) = h(e)), where 1(condition)
evaluates to 1 if the condition is true, and evaluates to 0 otherwise

«'Alh(e)] = count(e) + ¥,.s_... count(e’) - 1(h(e") = h(e)),

e’ #e

* est.(e) — count,(e) = count,(e’) - 1(h(e") = h(e))

e’ #e

* Alh(e)] = X ez counti(e’) - 1(h(e’) = h(e)), where 1(condition)
evaluates to 1 if the condition is true, and evaluates to 0 otherwise

« Alh(e)] = count((e) +). count (e") - 1(h(e") = h(e)),

e e

* est.(e) — count (e)/= count,(e’) - 1(h(e") = h(e))

e’ e

* Since we have a small array A with k locations, there are likely many
e’ # e with h(e’) = h(e), but can we bound the expected error?

Data Structure for Approximate Counts

* Recall: Fami@f hash functions h@> {0, 1, ..., k-1} is universal if for @

=1t
* There is a simple family where h can be specified using O(log [U]) bits. Here, @ =@

Data Structure for Approximate Counts

 Recall: Family H of hash functions h: U -> {0, 1, ..., k-1iis universal if for all x # y,
= < —

Prh() =h(y)] <

* There is a simple family where h can be specified using O(log |U|) bits. Here, |U| = |Z]

o E[esti(e) — counti(e)]'= E[Y ... counti(e’) - 1(h(e") = h(e))]

e'xe

Data Structure for Approximate Counts

* Recall: Family H of hash functions h: U -> {0, 1, ..., k-1} is universal if for all x # y,

1

= < —

Pr[hG) = ()] < 1
* There is a simple family where h can be specified using O(log |U|) bits. Here, |U| = |Z]

* E[esti(e) — counti(e)] = E[X.r., counti(e’) - 1(h(e’) = h(e))]
= Yerzecounty(e’) - E[1(h(e’) = h(e))]

Data Structure for Approximate Counts

* Recall: Family H of hash functions h: U -> {0, 1, ..., k-1} is universal if for all x # y,

1

= < —

Pr[hG) = ()] < 1
* There is a simple family where h can be specified using O(log |U|) bits. Here, |U| = |Z]

* E[esti(e) — counti(e)] = E[X./+, count(e’) - 1(h(e’) = h(e))]
= Yoz counte(e’) - E[1(h(e") = h(e))]
= Yoo counte(e’) - Pr[h(e’) = h(e)]

Data Structure for Approximate Counts

* Recall: Family H of hash functions h: U -> {0, 1, ..., k-1} is universal if for all x # y,

1

= < —

Pr[hG) = ()] < 1

* There is a simple family where h can be specified using O(log |U|) bits. Here, |U| = |Z]

* Efest(e) — count(e)] = E[X¢r,.. count(e’) - 1(h(e’) = h(e))]
= Yerzecounti(e’) - E[1(h(e’) = h(e))]
= Yoo counte(e’) - Pr[h(e’) = h(e)]
< Yerze coOunte(e’) - (i)

Data Structure for Approximate Counts

* Recall: Family H of hash functions h: U -> {0, 1, ..., k-1} is universal if for all x # y,

1

= < —

Pr[hG) = ()] < 1

* There is a simple family where h can be specified using O(log |U|) bits. Here, |U| = |Z]

* Efest(e) — count(e)] = E[X¢r,.. count(e’) - 1(h(e’) = h(e))]
= Yerzecounti(e’) - E[1(h(e’) = h(e))]
= Yoo counte(e’) - Pr[h(e’) = h(e)]
< Yol o cOunte(e) - (i)

_ |St|~count(e) < Et_l
k k

* Recall: Family H of hash functions h: U -> {0, 1, ..., k-1} is universal if for all x # y,
PrlhG) =h] <1
* There is a simple family where h can be specified using O(log |U|) bits. Here, |U| = |Z|

* Efest¢(e) — counti(e)] = E[X¢r, counti(e’) - 1(h(e’) = h(e))]
= z:e '+e Countt(e’) - E[l(h(e’) = h(e))]
= Yerzo count(e’) - Pr[h(e’) = h(e)]
< Yerze coOunte(e’) - (E)

_ IStl=counti(e) _ [Stl
k = k
k = 1/€ makes this at most € - |S¢|. Space is O(—) counters plus storing hash function

High Probability Bounds for

* Have 0 < est.(e) — count(e) <('/) expectation from CountMin
— county(e) < 2|S|/k Why?

Mawkow
)

* With probability at least 1/2, e
\
> QO

OLOD(

High Probability Bounds for CountMin

* Have 0 < est.(e) — count.(e) < |S;|/k in expectation from CountMin
 With probability at least 1/2, est.(e) — count,(e) < 2|S;|/k Why?

* Can we make the success probability 1-6?

* Have 0 < est.(e) — count.(e) < |S;|/k in expectation from CountMin
 With probability at least 1/2, est.(e) — count,(e) < 2|S;|/k Why?

* Can we make the success probability 1-6?
* Independent repetition: pick m hash functions hy, ..., h, with
h;:Z = {0,1, 2, ...,k — 1} independently from H. Create array A; for h;
when update a; arrives:
for eachifrom1tom
if a, = (add, e) then A;Jh;(e)] + +
else a, = (del, e) and’A; h;(e)] — —

High Probability Bounds and Overall Space

What is our new estimate of count(e)?

High Probability Bounds and Overall Space

What is our new estimate of count(e)?

best(e) : IPZ{I i[hi(e)].

High Probability Bounds and Overall Space

What is our new estimate of count(e)?

:: réf{l Ailhi(e)]-

-~ .

* Each Ai[h;(e)] is an overestimate to count,(e)

High Probability Bounds and Overall Space
What is our new estimate of count(e)?)_ 5\

besty(e) := min 4;[h;(e)].

* Each Ai[h;(e)] is an overestimate to count,(e)

* By independence, Pr[for all i, A;[h;(e)] — count;(e) >

High Probability Bounds and Overall Space

What is our new estimate of count(e)?

best(e) := rﬁ,ibn A;lhi(e)].

=1

* Each Ai[h;(e)] is an overestimate to count,(e)
m
* By independence, Pr[for all i, A;[h;(e)] — count,(e) = 2|S|/K] < (%)

* Forks= %and m = log, (%), the error is at most €|S;| with probability 1-8

What is our new estimate of count(e)?

T
best;(e) := I}lii] A;lhi(e)].
1=
Each A;[h;(e)] is an overestimate to count(e)
m
By independence Pr[for all i, A;[h;(e)] — count(e) = 2|S|/K] < G)

Fork == and m = log, () the error is at most €|S;| with probability 1-8

1)
Space: m// k= O("/) counters each of O(lg t) bits

m)(O(log |Z|) = O(log (E) log|Z|) bits to store hash functions

Fos {ﬁx‘e& e, ol I“rje emor] € CS\

e-Heavy Hitters | PTall e hae small emor)
Prrae, has lame ernr) <

* Our new estimate best(e) satisfies o
Pr[|best.(e) — count.(e)| < €|S{|]] = 1 (6

&3 S;Z%m‘d m \Lghe o fha cﬂesm?%zv;\ of—
and uses%_jgogt + log |X]) bits of space]
e N EE Y

>0

\

PP —

E o
* What if we want with probabilit @ Si | neously for all e, -
|best;(e) — counti(e)| < €|S¢|? %'g 5/

SOjL ax the O/V\O\l)lgig vs {w' an arb[ﬂw/ 'F'MA e = (

 Our new estimate best(e) satisfies
Pr[|best.(e) — count.(e)| < €|S¢|]] =1—-6

log(5) 1o

and uses O(—--e— + log()log |X]) bits of space

* What if we want with probability 9/10, simultaneously for all e,
|best (e) — count,(e)| < €|S(|?

* Set b = and apply a union bound over alle € X

10(Z]

