# Lecture 5: Hashing 

## Elaine Shi

(slides due to David Woodruff)



## Homework 2 is out!

## Hashing

- Universal hashing
- Perfect hashing


## Maintaining a Dictionary

- Let Ube a universe of "keys"
- all strings of ASCII characters of length at most 80
- set of all URLs
- Let $S$ be a subset of $U$, which is a small "dictionary"
- all English words
- set of all URLs you visited this month
- Support operations to maintain the dictionary
- Insert(x): add the key x to S
- Query (x): is the key $x$ in S ?
- Delete(x): remove the key x from S


## Dictionary Models

Static: don't support insert and delete operations, just optimize for fast query operations

- e.g., the English dictionary does not change much
- Could use a sorted array with binary search
- Insertion-only: just support insert and query operations
- Dynamic: support insert. delete, and query operations
- Could use a balanced search tree (AVL trees, splay trees) to get O(log |S|) time per operation
- Hashing is an alternative approach, often the fastest and most convenient


## Formal Hashing Setup

- Universe $U$ is very large
- E.g., set of ASCII strings of length 80 is $128^{80}$
- Care about a small subset $S \subset U$. Let $N=|S|$.
- $S$ could be the names of all students in this class $M \approx|S|$

- Our data structure is an array $A$ of size $M$ and a "hash funct on $h, j \rightarrow\{0,1, \ldots, M-1\}$.
- Typically $M \ll U$, so can't just store each key $x$ in $A[x]$
- Insert(x) will try to place key $x$ in $A[h(x)]$
- But what if $h(x)=h(y)$ for $x \neq y$ ? We let each entry of $A$ be a linked list.
- To insert an element $x$ into $A[h(x)]$, insert it at the top of the list
- Hope linked lists are small


## hash: chop and mix

## hacher (Fr.): chop

"chop" the input domain into many sub-domains that get "mixed" into the output range to improve the uniformity of the key distribution.

## How to Choose the Hash Function h?

- Desired properties:
- unlikely that $h(x)=h(y)$ for different keys $x$ and $y$
- array size $M$ to be $O(N)$, where $N$ is number of keys
- quickly compute $\begin{gathered} \\ (x) \\ \text { g }\end{gathered}$ giver $x$--- treat as $O(1)$ time
- How long do Query $(x)$ and Delete $(x)$ take?
- O(length of List A[h(x)]) time
- How long does Insert(x) take?
- O(1) time no matter what
- may first want to check for a duplicate though - that is O(length of list Alh(x)]) time
- How long can the lists A[h(x)] be?


## Bad Sets Exist for any Hash Function

- Claim: For any hash function $h: \cup-\geq\{0,1,2, \ldots, M-1\}$, if $|U| \geq(N-1) M+1$, there is a set $S$ of $N$ elements of $U$ that all hash to the same location
- Proof: if every location had at most N-1 elements of $U$ hashing to it, we would have $|\mathrm{U}| \leq(\mathrm{N}-1) \mathrm{M}$
- There's no good hash function $h$ that works for every S. Thoughts?

- Show for any sequence of insert, query, and delete operations, the expected number of operations, over a random h , is small

Idea 1: random hashing


Suppose $h(x)$ is a random oracle


- gives a random answer for any fresh input $x$
- gives the same answer for a previously queried input

$$
\begin{gathered}
E[\text { load in bin 1 }]=\frac{N}{M} \quad I_{i}=\left\{\begin{array}{l}
0 \text { ball } i \notin \text { bin } \\
1 \\
\text { ball } i \in \text { bin }
\end{array}\right. \\
E\left[\sum_{i=1}^{N} I_{i}\right]=\sum_{i=1}^{N} E\left[I_{i}\right)=N_{0} \frac{1}{M}=\frac{N}{M} \\
M=N
\end{gathered}
$$

$0 \cdots M-1 \quad \log _{2} M$ bits

## odea 1: random hashing

ho
hi suppose $h(x)$ is a random oracle
size of hash gives a random answer for any freshimput $x$

- gives the same answer for a previously queried input

In other words, we choose a randondash function from the family of all functions that max $\cup$ to $\{0, . . \mathrm{M}-1\}$

## Idea 2: Universal Hashing

- Definition: A set $H$ of hash functions $h$, whererearch $h$ in $H$ maps $U->\{0,1,2, \ldots, M-1\}$ is universal if for a $x \neq y$,
- The condition holds for every $x \neq y$, and the randomness is only over the choice of $h$ from $H$
- Equivalently, for every $x \neq y$, we have: $\frac{(h \in H \mid h(x)=h(y))}{|H|} \leq \frac{1}{M}$


## Universal Hashing Examples

Example 1: The following three hash families with hash functions mapping the se $\{a, b\}$ to $\{0,1\}$ are universal, because at most $1 / M$ of the hash functions in them cause $a$ and $b$ to collide, were $M=|\{0,1\}|$.


## Examples that are Not Universal

|  | $a$ | $b$ |
| :--- | :--- | :--- |
| $h_{1}$ | 0 | 0 |
| $h_{2}$ | 1 | 1 |



- Note that $a$ and $b$ collide with probability more than $1 / M=1 / 2$


## Universal Hashing Example

-The following hash function is universal with $M=|\{0,1,2\}|$


## Using Universal Hashing

- Theorem: If $H$ is universal, then for any set $S \subseteq U$ with $|S|=N$ for any $x \in$ $S$, if we choose $h$ alt random from $H$, the expected number of collisions between $x$ and other elements in $S$ is less than $N / M$.


## Using Universal Hashing

Theorem. If H is universal, then for any set $\mathrm{S} \subseteq \mathrm{U}$ with $|\mathrm{S}|=\mathrm{N}$, for any $\mathrm{x} \in$ $S$, if we choose $h$ at random from $H$, the expected number of collisions between $x$ and other elements in $S$ is less than $N / M$.

- Proof: For y =Swith $y \neq x$, let $C_{x y}=1$ if $h(x)=h(y)$, otherwise $C_{x y}=0$ Let $C_{x}=\sum_{y \neq x} C_{x y}$ be the total number of collisions with $x$

$$
\mathrm{E}\left[\mathrm{C}_{\mathrm{xy}}\right]=\operatorname{Pr}[\mathrm{h}(\mathrm{x})=\mathrm{h}(\mathrm{y})] \leqslant \frac{1}{\mathrm{M}}
$$

By linearity of expectation, $\mathrm{E}\left[\mathrm{C}_{\mathrm{x}}\right]=\sum_{\mathrm{y} \neq \mathrm{x}} \mathrm{E}\left[\mathrm{C}_{\mathrm{xy}}\right] \leqslant \frac{\mathrm{N}-1}{\mathrm{M}}$

## Using Universal Hashing

- Corollary: If H is universal, for any sequence of L insert, query, and delete operations in which there are at mos. $M$ keys in the data structure at any time, the expected cost of the L operations for a random $\mathrm{h} \in \mathrm{H}$ is $\mathrm{O}(\mathrm{L})$
- Assumes the time to compute $h$ is $\mathrm{O}(1)$
- Proof: For any operation in the sequence, its expected cost is $\mathrm{O}(1)$ by the last theorem, so the expected total cost is $\mathrm{O}(\mathrm{L})$ by linearity of expectation


## But how to Construct a Universal Hash Family?

- Suppose $|\mathrm{U}|=2^{(\mathrm{U}}$ and $(\mathrm{M})=2^{(\mathrm{m}}$
$x \in U$
- Let $A$ be a random $m \times u$ binary matrix, and $h(x)=A x \bmod 2$

- Claim: for $\mathrm{x} \neq \mathrm{y}, \underset{\mathrm{h}}{\operatorname{Pr}[\mathrm{h}(\mathrm{x})=\mathrm{h}(\mathrm{y})]}=\frac{1}{\mathrm{M}}=\frac{1}{2^{\mathrm{m}}}$

But how to Construct av Universal Hash $\sum P P_{1}\left[A_{-i}\right]$ Family?

- Claim: For $x \neq y, \underset{h}{\operatorname{Pr}}[h(x)=h(y)]=\frac{1}{M}=\frac{1}{2^{m}}$ $\rightarrow i$ th column of $A$
- Proof: $A \cdot x \bmod 2=\sum_{i} A_{i} X_{j} \bmod 2$, where $A_{i}$ is the $i$-th column of $A$ If $h(x)=h(y)$, then $A x=A y \bmod 2$, so $A(x-y))=0 \bmod 2$
If $x \neq y$ there exists an $\mathrm{i}^{*}$ for which $\mathrm{x}_{\mathrm{i}^{*}} \neq \mathrm{y}_{\mathrm{i}^{*}}$

$$
\text { Fir } A_{j} \text { jor all } j \neq i^{*} \text {, which fixes } b \Rightarrow \sum_{j \neq i^{*}} A_{j}\left(x_{j}-y_{j}\right) \bmod 2
$$

$$
A(x-y)=0 \bmod 2 \text { if and only if } A_{i^{*}}=(6)
$$

$$
\left.\frac{\mathrm{Pr}}{\mathrm{~A}_{\mathrm{i}^{*}}} \mathrm{~A}_{\mathrm{i}^{*}}=\mathrm{b}\right)=\frac{1}{2^{\mathrm{m}}}=\frac{1}{\mathrm{M}}
$$

$$
P_{r}\left[A_{i}=x A_{-i x} \left\lvert\, I_{i} *=\frac{1}{M}\right.\right.
$$

So $h(x)=A x \bmod 2$ is universal
k-wise Independent Families
k-wise independent

- Definition: A hash function family H is k -universal if for every set of k distinct keys $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}_{2}}$ and every set of k values $\mathrm{v}_{1}, \ldots . \mathrm{v}_{\mathrm{k}} \in\{0,1, \ldots, \mathrm{M}-1\}$,

$$
\operatorname{Pr}\left[\mathrm{h}\left(\mathrm{x}_{1}\right)=\mathrm{v}_{1} \text { AND } \mathrm{h}\left(\mathrm{x}_{2}\right)=\mathrm{v}_{2} \text { AND } \ldots \text { AND } \mathrm{h}\left(\mathrm{x}_{\mathrm{k}}\right)=\mathrm{v}_{\mathrm{k}}\right]=\frac{1}{\mathrm{M}^{\mathrm{k}}}
$$

- If H is 2-universal, then it is universal. Why? $\operatorname{Pr}[h(x)=h(y)] \leq \frac{1}{m}$

$$
=\sum_{1 \in S 0 \ldots M-1} \operatorname{Pr}[h(x) \sim v, h(y)=v]
$$

$h(x)=A x$ mod 2 for a random binary $A$ is not 2 -universal. Why?

$$
=\sum_{V_{\in\{0,-m-1\}}} \frac{1}{M^{2}}=\frac{1}{M}
$$

## $k=2$ "pair wise independent" k-wise Independent Families

- Definition: A hash function family H is k -universal if for every set of k distinct keys $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}$ and every set of k values $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}} \in\{0,1, \ldots, \mathrm{M}-1\}$,

$$
\operatorname{Pr}\left[h\left(x_{1}\right)=v_{1} \text { AND } h\left(x_{2}\right)=v_{2} \text { AND } \ldots \text { AND } h\left(x_{k}\right)=v_{k}\right]=\frac{1}{\mathrm{~m}^{\mathrm{k}}}
$$

- If H is 2-universal, then it is universal. Why?
- $\mathrm{h}(\mathrm{x})=\mathrm{Ax} \bmod 2$ for a random binary A is not 2-universal. Why?
- Exercise: Show $A x+b$ mod 2 is 2 -universal, where $A$ in $\{0,1\}^{m x u}$ and $b \in$ $\{0,1\}^{\mathrm{m}}$ are chosentidependently and uniformly at random



## More Universal Hashing

- Given a key $x$, suppose $x=\left[x_{1}, \ldots, x_{k}\right]$ where each $x_{i} \in\{0,1, \ldots, M-1\}$
- Suppose M is prime
- Choose random $\mathrm{r}_{1}, . ., \mathrm{r}_{\mathrm{k}} \in\{0,1, \ldots, \mathrm{M}-1\}$ and define

$$
h(x)=r_{1} x_{1}+r_{2} x_{2}+\ldots+r_{k} x_{k} \bmod M
$$

- Claim: the family of such hash functions is universal, in fact, $\operatorname{Pr}_{\mathrm{h}}[\mathrm{h}(\mathrm{x})=\mathrm{h}(\mathrm{y})]=\frac{1}{\mathrm{M}}$ for all distinct x and y


## More Efficient Universal Hashing

- Claim: the family of such hash functions is universal, that is, $\underset{\mathrm{h}}{\operatorname{Pr}}[\mathrm{h}(\mathrm{x})=\mathrm{h}(\mathrm{y})]=\frac{1}{\mathrm{M}}$ for all $\mathrm{x} \neq \mathrm{y}$
- Proof: Since $x \neq y$, there is an $i^{*}$ for which $x_{i^{*}} \neq y_{i^{*}}$

Let $h^{\prime}(x)=\sum_{j \neq i^{*}} r_{j} x_{j}$, and $h(x)=h^{\prime}(x)+r_{i^{*}} X_{i^{*}} \bmod M$
If $h(x)=h(y)$, then $h^{\prime}(x)+r_{i^{*}} X_{i^{*}}=h^{\prime}(y)+r_{i^{*}} y_{i^{*}} \bmod M$
So $r_{i^{*}}\left(x_{i^{*}}-y_{i^{*}}\right)=h^{\prime}(y)-h^{\prime}(x) \bmod M$, or $r_{i^{*}}=\frac{h^{\prime}(y)-h^{\prime}(x)}{x_{i^{*}-y_{i^{*}}}} \bmod M$
This happens with probability exactly $1 / M$

## Perfect Hashing <br> static dictionary

- If we fix the dictionary S of size N , can we find a hash function h so that all query $(\mathrm{x})$ operations take constant time?
- Claim: If H is universal andM$=\mathrm{N}^{2}$, then $\operatorname{Pr}_{h \leftarrow H^{2}}[$ no collisions in $S] \geq \frac{1}{2}$
$い$
Perfect Hashing̣

$$
\operatorname{Pr}\left[E_{1} \text { or } E_{2}\right] \leq \operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right]
$$

Static data structure

- If we fix the dictionary $S$ of size $N$, can we find a hash function $h$ so that all query $(x)$ operations take constant time?
- Claim: If $H$ is universal and $M=N^{2}$, ther $\operatorname{Pr}_{h \leftarrow H}[$ no collisions in $S] \geq \frac{1}{2}$
- Proof: How many pairs $\{x, y\}$ of distinct $x, v$ in $S$ are there?

Answer $N(N-1) / 2$
For each pair, the probabilitv of a collision is at mos. $1 / \mathrm{M}$
$\operatorname{Pr}[$ exists a collision $](\mathrm{N}(\mathrm{N}-1) / 2) / \mathrm{M} \leq \frac{1}{2}$
Just try a random $h$ and check if there are any collisions
Problem: our hash table has $\mathrm{M}=\mathrm{N}^{2}$ space! How can we get $\mathrm{O}(\mathrm{N})$ space?

## Perfect Hashing in O(N) Space: 2 Level Scheme

- Choose a hash function $(h ;) \rightarrow\{1,2, \ldots, \mathrm{~N}\}$ from a universal family
- Let $\mathrm{L}_{\mathrm{i}}$ be the number of items x in S for which $\mathrm{h}(\mathrm{x})=\mathrm{i}$
- Choose $N$ "second-level" hash functions $h_{1}, h_{2}, \ldots, h_{N}$, where $h_{i}: U \rightarrow\left\{1, \ldots, L_{i}^{2}\right\}$


By previous analysis, can choose hash functions $\mathrm{h}_{1}, \mathrm{~h}_{2}, \ldots, \mathrm{~h}_{\mathrm{N}}$ so that there are no collisions, so O(1) time

Hash table size is $\sum_{\mathrm{i}=1, \ldots, \mathrm{n}} \mathrm{L}_{\mathrm{i}}^{2}$ How big is that??

## Perfect Hashing in O(N) Space: 2 level Scheme



## Perfect Hashing in O(N) Space: 2 Level Scheme

- Theorem: If we pick $h$ from a universal family H , then

$$
\underset{\mathrm{h} \leftarrow \mathrm{H}}{\operatorname{Pr}}\left[\sum_{\mathrm{i}=1, \ldots \mathrm{~N}} \mathrm{~L}_{\mathrm{i}}^{2}>4 \mathrm{~N}\right] \leq \frac{1}{2}
$$

- Proof: It suffices to show $\mathrm{E}\left[\sum_{\mathrm{i}} \mathrm{L}_{\mathrm{i}}^{2}\right]<2 \mathrm{~N}$ and apply Markov's inequality

$$
\begin{aligned}
& \text { Let } \mathrm{C}_{\mathrm{x}, \mathrm{y}}=1 \text { if } \mathrm{h}(\mathrm{x})=\mathrm{h}(\mathrm{y}) \text {. By counting collisions on both sides, } \sum_{\mathrm{i}} \mathrm{~L}_{\mathrm{i}}^{2}=\sum_{\mathrm{x}, \mathrm{y}} \mathrm{C}_{\mathrm{x}, \mathrm{y}} \\
& \text { If } x=y \text {, then } C_{x, y}=1 \text {. If } x \neq y \text {, then } E\left[C_{x, y}\right]=\operatorname{Pr}\left[C_{x, y}=1\right] \leq \frac{1}{N} \\
& \mathrm{E}\left[\sum_{i} \mathrm{~L}_{\mathrm{i}}^{2}\right]=\sum_{x, y} \mathrm{E}\left[\mathrm{C}_{\mathrm{x}, \mathrm{y}}\right]=\mathrm{N}+\sum_{\mathrm{x} \neq \mathrm{y}} \mathrm{E}\left[\mathrm{C}_{\mathrm{x}, \mathrm{y}}\right] \leq \mathrm{N}+\mathrm{N}(\mathrm{~N}-1) / \mathrm{N}<2 \mathrm{~N}
\end{aligned}
$$

So choose a random $h$ in $H$, check $\sum_{i=1, \ldots, n} L_{i}^{2} \leq 4 N$, and if so, then choose $h_{1}, \ldots, h_{N}$

## ARTICLE <br> Storing a Sparse Table with@1) Worst Case Access Time

Authors: 8 Michael L. Fredman, 8 János Komlós, 8 Endre Szemerédi Authors Info \& Claims

Journal of the ACM, Volume 31, Issue 3•July 1984 • pp 538-544•https://doi.org/10.1145/828.1884

