
Lecture 5: Hashing
Elaine Shi

(slides due to David Woodruff)

Homework 2 is out!

Hashing

• Universal hashing

• Perfect hashing

Maintaining a Dictionary
• Let U be a universe of “keys”

• all strings of ASCII characters of length at most 80
• set of all URLs

• Let S be a subset of U, which is a small “dictionary”
• all English words
• set of all URLs you visited this month

• Support operations to maintain the dictionary
• Insert(x): add the key x to S
• Query(x): is the key x in S?
• Delete(x): remove the key x from S

Dictionary Models
• Static: don’t support insert and delete operations, just optimize for fast
query operations

• e.g., the English dictionary does not change much
• Could use a sorted array with binary search

• Insertion-only: just support insert and query operations

• Dynamic: support insert, delete, and query operations
• Could use a balanced search tree (AVL trees, splay trees) to get O(log |S|) time

per operation

• Hashing is an alternative approach, often the fastest and most
convenient

Formal Hashing Setup

hash: chop and mix

 hacher (Fr.): chop

"chop" the input domain into many sub-domains that get
"mixed" into the output range to improve the uniformity of the
key distribution.

How to Choose the Hash Function h?
• Desired properties:

• unlikely that h(x) = h(y) for different keys x and y
• array size M to be O(N), where N is number of keys
• quickly compute h(x) given x --- treat as O(1) time

• How long do Query(x) and Delete(x) take?
• O(length of list A[h(x)]) time

• How long does Insert(x) take?
• O(1) time no matter what
• may first want to check for a duplicate though – that is O(length of list

A[h(x)]) time
• How long can the lists A[h(x)] be?

Bad Sets Exist for any Hash Function

Idea 1: random hashing

Suppose h(x) is a random oracle
● gives a random answer for any fresh input x
● gives the same answer for a previously queried input

Idea 1: random hashing

Suppose h(x) is a random oracle
● gives a random answer for any fresh input x
● gives the same answer for a previously queried input

In other words, we choose a random hash function from
the family of all functions that map U to {0, … M-1}

Problem: does not have a succinct description

Idea 2: Universal Hashing

Universal Hashing Examples

Examples that are Not Universal

•Note that a and b collide with probability more than
1/M = 1/2

2

Universal Hashing Example

•The following hash function is universal with M = |{0,1,2}|

Using Universal Hashing

Using Universal Hashing

Using Universal Hashing

But how to Construct a Universal Hash
Family?

But how to Construct a Universal Hash
Family?
•

k-wise Independent Families

k-wise Independent Families

More Universal Hashing
•

More Efficient Universal Hashing
•

Perfect Hashing

Perfect Hashing

Perfect Hashing in O(N) Space: 2 Level Scheme

Perfect Hashing in O(N) Space: 2 Level Scheme

Perfect Hashing in O(N) Space: 2 Level Scheme

