
15-451/651: Design & Analysis of Algorithms February 1, 2022
Lecture #5: Hashing last changed: January 30, 2022

Hashing is a great practical tool, with an interesting and subtle theory too. In addition to its use as
a dictionary data structure, hashing also comes up in many different areas, including cryptography
and complexity theory. In this lecture we describe two important notions: universal hashing (also
known as universal hash function families) and perfect hashing.

Material covered in this lecture includes:

• The formal setting and general idea of hashing.
• Universal hashing.
• Perfect hashing.

1 Maintaining a Dictionary

While describing the desired properties, let us keep one application in mind. We want to maintain
a dictionary. We have a large universe of “keys” (say the set of all strings of length at most 80
using the Roman alphabet), denoted by U . The actual dictionary (say the set of all English words)
is some subset S of this universe. S is typically much smaller than U . The operations we want to
implement are:

• add(x): add the key x to S.
• query(q): is the key q ∈ S?
• delete(x): remove the key x from S.

In some cases, we don’t care about adding and removing keys, we just care about fast query times—
e.g., the actual English dictionary does not change (or changes very gradually). This is called the
static case. Another special case is when we just add keys: the insertion-only case. The general
case is called the dynamic case.

For the static problem we could use a sorted array with binary search for lookups. For the dynamic
we could use a balanced search tree. However, hashing gives an alternative approach that is often
the fastest and most convenient way to solve these problems. For example, suppose you are writing
an AI-search program, and you want to store situations that you’ve already solved (board positions
or elements of state-space) so that you don’t redo the same computation when you encounter them
again. Hashing provides a simple way of storing such information. There are also many other uses
in cryptography, networks, complexity theory.

2 Hashing basics

The formal setup for hashing is as follows.

• Keys come from some large universe U . (E.g, think of U as the set of all strings of at most
80 ascii characters.)

• There is some set S in U of keys we actually care about (which may be static or dynamic).
Let N = |S|. Think of N as much smaller than the size of U . For instance, perhaps S is the
set of names of students in this class, which is much smaller than 12880.

1

• We will perform inserts and lookups by having an array A of some size M , and a hash
function h : U → {0, . . . ,M − 1}. Given an element x, the idea of hashing is we want to
store it in A[h(x)]. Note that if U was small (like 2-character strings) then you could just
store x in A[x] like in bucketsort. The problem is that U is big: that is why we need the hash
function.

• We need a method for resolving collisions. A collision is when h(x) = h(y) for two different
keys x and y. For this lecture, we will handle collisions by having each entry in A be a linked
list. There are a number of other methods, but for the issues we will be focusing on here, this
is the cleanest. This method is called separate chaining. To insert an element, we just put
it at the top of the list. If h is a good hash function, then our hope is that the lists will be
small.

One great property of hashing is that all the dictionary operations are incredibly easy to implement.
To perform a lookup of a key x, simply compute the index i = h(x) and then walk down the list at
A[i] until you find it (or walk off the list). To insert, just place the new element at the top of its
list. To delete, one simply has to perform a delete operation on the associated linked list. (This
is called “separate chaining”.) The question we now turn to is: what do we need for a hashing
scheme to achieve good performance?

Desired properties: The main desired properties for a good hashing scheme are:

1. The keys are nicely spread out so that we do not have too many collisions, since collisions
affect the time to perform lookups and deletes.

2. M = O(N): in particular, we would like our scheme to achieve property (1) without needing
the table size M to be much larger than the number of elements N .

3. The function h is fast to compute. In our analysis today we will be viewing the time to
compute h(x) as a constant. However, it is worth remembering in the back of our heads that
h shouldn’t be too complicated, because that affects the overall runtime.

Given this, the time to lookup an item x is O(length of list A[h(x)]). The same is true for deletes.
Inserts take time O(1) no matter what the lengths of the lists. So, we want to be able to analyze
how big these lists get.

Basic intuition: One way to spread elements out nicely is to spread them randomly. Unfortu-
nately, we can’t just use a random number generator to decide where the next element goes because
then we would never be able to find it again. So, we want h to be something “pseudorandom” in
some formal sense.

We now present some bad news, and then some good news.

Claim 1 (Bad news) For any hash function h, if |U | ≥ (N − 1)M + 1, there exists a set S of N
elements that all hash to the same location.

Proof: by the pigeon-hole principle. In particular, to consider the contrapositive, if every location
had at most N − 1 elements of U hashing to it, then U could have size at most M(N − 1).

So, this is partly why hashing seems so mysterious — how can one claim hashing is good if for any
hash function you can come up with ways of foiling it? One answer is that there are a lot of simple

2

hash functions that work well in practice for typical sets S. But what if we want to have a good
worst-case guarantee?

2.1 A Key Idea

Here is a key idea: let’s use randomization in our construction of h, in analogy to randomized
quicksort. (The function h itself will be a deterministic function, of course). What we will show
is that for any sequence of insert and lookup operations (we won’t need to assume the set S of
elements inserted is random), if we pick h in this probabilistic way, the performance of h on this
sequence will be good in expectation. So, this is the same kind of guarantee as in randomized
quicksort or treaps. In particular, this is idea of universal hashing.

Once we develop this idea, we will use it for an especially nice application called “perfect hashing”.

3 Universal Hashing

Definition 2 A randomized algorithm H for constructing hash functions h : U → {0, . . . ,M − 1}
is universal if for all x 6= y in U , we have

Pr
h←H

[h(x) = h(y)] ≤ 1/M. (1)

We also say that a set H of hash functions is a universal hash function family if the procedure
“choose h ∈ H at random” is universal. (Here we are identifying the set of functions with the
uniform distribution over the set.)

Make sure you understand the definition! This condition must hold for every pair of distinct keys
x 6= y, and the randomness is over the choice of the actual hash function h from the set H.

Here’s an equivalent way of looking at this. First, count the number of hash functions in H that cause
a and b to collide. This is

|{h ∈ H|h(a) = h(b)}|.
Divide this number by |H|, the number of hash functions. This is the probability on the left hand side
of (1). So, to show universality you want

|{h ∈ H | h(a) = h(b)}|
|H| ≤ 1

m

for every a 6= b ∈ U .

Here are some examples and exercises to help you become comfortable with the definition.

Example 1: The following three hash families with hash functions mapping the set {a, b} to {0, 1} are
universal, because at most 1/M of the hash functions in them cause a and b to collide, were M = |{0, 1}|.

a b

h1 0 0
h2 0 1

a b

h1 0 1
h2 1 0

a b

h1 0 0
h2 1 0
h3 0 1

On the other hand, this next two hash families are not, since a and b collide with probability more than
1/M = 1/2.

a b

h1 0 0
h3 1 1

a b c

h1 0 0 1
h2 1 1 0
h3 1 0 1

3

3.1 Using Universal Hashing

Theorem 3 If H is universal, then for any set S ⊆ U of size N , for any x ∈ U (e.g., that we might
want to lookup), if we construct h at random according to H, the expected number of collisions
between x and other elements in S is at most N/M .

Proof: Each y ∈ S (y 6= x) has at most a 1/M chance of colliding with x by the definition of
“universal”. So,

• Let the random variable Cxy = 1 if x and y collide and 0 otherwise.

• Let Cx be the r.v. denoting the total number of collisions for x. So, Cx =
∑

y∈S,y 6=xCxy.

• We know E[Cxy] = Pr(x and y collide) ≤ 1/M .

• So, by linearity of expectation, E[Cx] =
∑

y E[Cxy] < N/M.

We now immediately get the following corollary.

Corollary 4 If H is universal then for any sequence of L insert, lookup, and delete operations
in which there are at most M elements in the system at any one time, the expected total cost of the
L operations for a random h ∈ H is only O(L) (viewing the time to compute h as constant).

Proof: For any given operation in the sequence, its expected cost is constant by Theorem 3, so
the expected total cost of the L operations is O(L) by linearity of expectation.

Can we actually construct a universal H? If not, this this is all pretty vacuous. Luckily, the answer
is yes.

3.2 Constructing a universal hash family: the matrix method

Let’s say keys are u-bits long. Say the table size M is power of 2, so an index is m-bits long with
M = 2m. What we will do is pick A to be a random m-by-u 0/1 matrix, and define h(x) = Ax,
where we do addition mod 2. These matrices are short and fat. For instance:

A

x

h(x) = Ax
=

u

m

Claim 5 For x 6= y, Prh[h(x) = h(y)] = 1/M = 1/2m.

Proof: First of all, what does it mean to multiply A by x? We can think of it as adding some of
the columns of A (doing vector addition mod 2) where the 1 bits in x indicate which ones to add.
E.g., if x = (1010 · · ·)ᵀ, Ax is the sum of the 1st and 3rd columns of A.

Now, take an arbitrary pair of keys x, y such that x 6= y. They must differ someplace, so say they
differ in the ith coordinate and for concreteness say xi = 0 and yi = 1. Imagine we first choose all
the entries of A but those in the ith column. Over the remaining choices of ith column, h(x) = Ax

4

is fixed, since xi = 0 and so Ax does not depend on the ith column of A. However, each of the 2m

different settings of the ith column gives a different value of h(y) (in particular, every time we flip
a bit in that column, we flip the corresponding bit in h(y)). So there is exactly a 1/2m chance that
h(x) = h(y).

More verbosely, let y′ = y but with the ith entry set to zero. So Ay = Ay′+ the ith column of A.
Now Ay′ is also fixed now since y′i = 0. Now if we choose the entries of the ith column of A, we get
Ax = Ay exactly when the ith column of A equal A(x− y′), which has been fixed by the choices of
all-but-the-ith-column. Each of the m random bits in this ith column must come out right, which
happens with probability (1/2) each. These are independent choices, so we get probability (1/2)m.

There are other methods to construct universal hash families based on multiplication modulo primes
as well (see Section 3.3).

One last note: there is a closely-related concept called an “`-universal” or “`-wise-independent”
hash function. A hash function family is `-universal if for every set of ` distinct keys x1, x2, . . . , x`
and every set of ` values v1, v2, . . . , v` ∈ {0, . . . ,M − 1}, we have

Pr
h←H

[h(x1) = v1 AND h(x2) = v2 AND . . . AND h(x`) = v`] = 1/M `.

It is easy to see that if H is 2-universal then it is universal. Note that the above matrix-based hash
family was not 2-universal since the hash functions all mapped 0 to 0.

Exercise 1: Show that if we choose A ∈ {0, 1}m×u and b ∈ {0, 1}m independently and uniformly at
random, then the hash family h(x) = Ax+ b is 2-universal.

3.3 Another method for universal hashing

Here is another method for constructing universal hash functions that is a bit more efficient than
the matrix method given earlier.

In the matrix method, we viewed the key as a vector of bits. In this method, we will instead view
the key x as a vector of integers [x1, x2, . . . , xk] with the only requirement being that each xi is in
the range {0, 1, . . . ,M −1}. For example, if we are hashing strings of length k, then xi could be the
ith character (assuming our table size is at least 256) or the ith pair of characters (assuming our
table size is at least 65536). Furthermore, we will require our table size M to be a prime number.
To select a hash function h we choose k random numbers r1, r2, . . . , rk from {0, 1, . . . ,M − 1} and
define:

h(x) = r1x1 + r2x2 + . . . + rkxk mod M.

The proof that this method is universal follows the exact same lines as the proof for the matrix
method. Let x and y be two distinct keys. We want to show that Prh(h(x) = h(y)) ≤ 1/M .
Since x 6= y, it must be the case that there exists some index i such that xi 6= yi. Now imagine
choosing all the random numbers rj for j 6= i first. Let h′(x) =

∑
j 6=i rjxj . So, once we pick ri we

will have h(x) = h′(x) + rixi. This means that we have a collision between x and y exactly when
h′(x) + rixi = h′(y) + riyi mod M , or equivalently when

ri(xi − yi) = h′(y)− h′(x) mod M.

Since M is prime, division by a non-zero value mod M is legal (every integer between 1 and M − 1
has a multiplicative inverse modulo M), which means there is exactly one value of ri modulo M
for which the above equation holds true, namely ri = (h′(y) − h′(x))/(xi − yi) mod M . So, the
probability of this occuring is exactly 1/M .

5

4 Perfect Hashing

The next question we consider is: if we fix the set S (the dictionary), can we find a hash function
h such that all lookups are constant-time? The answer is yes, and this leads to the topic of perfect
hashing. We say a hash function is perfect for S if all lookups involve O(1) work. Here are now
two methods for constructing perfect hash functions for a given set S.

4.1 Method 1: an O(N2)-space solution

Say we are willing to have a table whose size is quadratic in the size N of our dictionary S. Then,
here is an easy method for constructing a perfect hash function. Let H be universal and M = N2.
Then just pick a random h from H and try it out! The claim is there is at least a 50% chance it
will have no collisions.

Claim 6 If H is universal and M = N2, then Prh∼H(no collisions in S) ≥ 1/2.

Proof:

• How many pairs (x, y) in S are there? Answer:
(
N
2

)
• For each pair, the chance they collide is ≤ 1/M by definition of “universal”.

• So, Pr(exists a collision) ≤
(
N
2

)
/M < 1/2.

This is like the other side to the “birthday paradox”. If the number of days is a lot more than the
number of people squared, then there is a reasonable chance no pair has the same birthday.

So, we just try a random h from H, and if we got any collisions, we just pick a new h. On average,
we will only need to do this twice. Now, what if we want to use just O(N) space?

4.2 Method 2: an O(N)-space solution

The question of whether one could achieve perfect hashing in O(N) space was a big open question
for some time, posed as “should tables be sorted?” That is, for a fixed set, can you get constant
lookup time with only linear space? There was a series of more and more complicated attempts,
until finally it was solved using the nice idea of universal hash functions in 2-level scheme.

The method is as follows. We will first hash into a table of size N using universal hashing. This will
produce some collisions (unless we are extraordinarily lucky). However, we will then rehash each
bin using Method 1, squaring the size of the bin to get zero collisions. So, the way to think of this
scheme is that we have a first-level hash function h and first-level table A, and then N second-level
hash functions h1, . . . , hN and N second-level tables A1, . . . , AN . To lookup an element x, we first
compute i = h(x) and then find the element in Ai[hi(x)]. (If you were doing this in practice, you
might set a flag so that you only do the second step if there actually were collisions at index i, and
otherwise just put x itself into A[i], but let’s not worry about that here.)

Say hash function h hashes Li elements of S to location i. We already argued (in analyzing Method
1) that we can find h1, . . . , hN so that the total space used in the secondary tables is

∑
i(Li)

2. What
remains is to show that we can find a first-level function h such that

∑
i(Li)

2 = O(N). In fact, we
will show the following:

6

N

L2
4

L2
6

L2
9

L2
10

Theorem 7 If we pick the initial h from a universal set H, then

Pr[
∑
i

(Li)
2 > 4N] < 1/2.

Proof: We will prove this by showing that E[
∑

i(Li)
2] < 2N . This implies what we want by

Markov’s inequality. (If there was even a 1/2 chance that the sum could be larger than 4N then
that fact by itself would imply that the expectation had to be larger than 2N . So, if the expectation
is less than 2N , the failure probability must be less than 1/2.)

Now, the neat trick is that one way to count this quantity is to count the number of ordered pairs
that collide, including an element colliding with itself. E.g, if a bucket has {d,e,f}, then d collides
with each of {d,e,f}, e collides with each of {d,e,f}, and f collides with each of {d,e,f}, so we
get 9. So, we have:

E[
∑
i

(Li)
2] = E[

∑
x

∑
y

Cxy] (Cxy = 1 if x and y collide, else Cxy = 0)

= N +
∑
x

∑
y 6=x

E[Cxy]

≤ N + N(N − 1)/M (where the 1/M comes from the definition of universal)

< 2N. (since M = N)

So, we simply try random h from H until we find one such that
∑

i L
2
i < 4N , and then fixing that

function h we find the N secondary hash functions h1, . . . , hN as in method 1.

7

	Maintaining a Dictionary
	Hashing basics
	A Key Idea

	Universal Hashing
	Using Universal Hashing
	Constructing a universal hash family: the matrix method
	Another method for universal hashing

	Perfect Hashing
	Method 1: an O(N2)-space solution
	Method 2: an O(N)-space solution

