15451 Fall 2022

Amortized Analysis

Elaine Shi

Imagine some data structure

e Each operation takes non-uniform
runtime
e An algorithm may make many calls to

the data structure
e What matters: average cost per
operation, also called amortized cost

Example: growing an array

e On item arrival, store in an array
e No prior knowledge of #items

What space should we preserve
for the array?

o Allocate O(1) upfront
e Whenever full, double the size g .

What is the amortized cost?

std: vector

> constructor: vector<int> array
> push_back

> pop_back

> Index into: arraylil

o Allocate O(1) upfront
7. & Whenever full, double the size
< e Whenever % loaded, half the size

This Lecture

e | earn how to do amortized analysis
e Design algorithms with good
amortized runtime

Amortized algorithm design and
analysis are useful in many applications!

Growing an array

e Initialize(): allocates an empty table of size1(n=1,s=0)
e insertl) add a new element to the table (s++)
o ifs=nthen grow(),
o add the new elem to arraylsl(costs 1)
e grow(),double the size from n to 2n, Costs 2n
Suppose at the end, there areé m/elements in the array.

What is the amortized cost of such an array?

example: Binary Counter

RO ©
e

g~ ©
PO OO0OO0 O D

Ja)

FRFRPROOOORHRRLROO®®

HOH@H@HPH@H@H@

Y

!ﬁ
//\K:\Hl—\l—\l—\pl—\\l

o0\
N\——\\I—\HOOI—\HOQWSQJ—‘

=H

e Suppose each bit flipped costs 1
e Amortized cost of the binary counter?

l
Tt T+ Tt —m 4270
o
2T _

-

The Potential Method

e Another method of counting
e Sometimes makes analysis easier
o e.g. for more complex algorithms

The Potential Method AT

Banker’s view 0
e Initially bank is empty
® cvery step: |
o put coins into bank —
o pay for the work using (part of) the coins in

the bank

How many coins should we deposit per step,
s.t. we never run out of coins?

Banker's view: Binary Counter ~ b

j +otal coinS ban K
: 3 be

| Qb (H

H(0nS you need 0 put
o fme STEP (

\MCDSTOJVMZPL + pr ¢

Banker's view: Binary Counter

e bank: 1 coin on each 1 bit
e cvery 0 = 1. deposit 2 coins
e cvery 1= 0. use the coins on 1s to pay

The Potential Method

Energy IN

Energy OUT

>

Physist's view

L =
{ %0

(@

Electric potential = voltage

J
b4
2

The Potential Method

Physist's view
e Need to pay to build up potential

e Whenever the algorithm incurs some cost, we
can pay for it using the potential

How much should we pay per step, s.t. there is
always enough potential to pay for the
algorithm's cost?

2ed thh)
Mg}rﬁs‘re[’%zg cost O}Lﬁs pefation \//P;WWZ end of
ac; = ¢; + Qj — Qi1
(A 1 —
/{’/—w/\-’ “
(amortized cost) = (actual cost) 4 (change in potential).

B 0ot B AL b -~ B

ac; = ¢; + ¢; — qﬁz_

(amortized cost) = (actual cost) + (change in potential).

Summing both sides

Zacz' = | (ci\+ @i — di1) :¢n—¢o+ZCi

ac; = C; + Q; — Qi1

(amortized cost) = (actual cost) + (change in potential).

Summing both sides

Potential analysis: growing a table

L
ol 5*‘“{& s <3)

otherwise

oc= | T4 =5

whuopes T gedd 0 B0 S 50

el =20 L1 I -

> =

Potential analysis: growing a table

(0 ifes 2 8n
(I)(n, 8) = { 4(8 2 g) otherwise

Potential analysis: growing a table

{O ifsgg-

otherwise

Potential analysis: growing and
shrinking a table

e initialize(: allocates an empty table of size 2(n =2, s = 0)
e insert):add a new element to the table (s++) o
o if s=nthen grow(),
o add the new elem to arrayls| (costs 1)
o deletel): delete the last elem from table (s--)
o if s =n/4 and n>=4 then shrink()
o delete last elem (costs 1)
e grow(): double the size from/n)to
e shrink(): change the size of table to n/2. @

(W

Value of n depends not just on s, but
also the history

QR L L U
©@ha, 2),, (4, 4>‘@ @ﬁ), (3.8), (2:8), (L 4). (2,4), (3,4)

b
7
6
g
no . -
2%
-
1
o

L 2 3¢ 5 g 7 8
5

N N
d(n,s) =‘\z§4EE)— —723'-|4 @ n=2

Theorem: total cost of N insertions
and deletions is at most 5 ’ﬂf.‘

Jasecrior - | 1+ &4 —:g
¥

D\CW
CAS

Deletwm: }@S_

G(s) n

@(s) n

(>

Fl=

The dictionary data structure 4"

° msert@ val) 1

e search(key

Next lecture: splay tree

Today: a hierarchical data structure that
Is almost as good as splay tree.

e A sorted array can be searched
in O(log n) time B g \
Unfortunately insertion is slow

V%

Jeppo ¢ + insertl)

[4,8? C-lony2 WP{? ey

. F)

3: [2, 6, 9, 12, 13, 16, zo,ﬁan/%ﬂ
e .

OHa)

e Search: binary search in each level

O (legnogr) =0 Ugg™n)

—

-~

L]

L]
@)

e Now we \X/ant to insert 10

¢ N
@/@F/ZC+C /UWPC
W/fﬁsigpé MCH—/CM—NC‘P
Cuen %e*wsi CN OU‘)J

After inserting 10 E 5 5:]

[240,689,100, 006

)’ 1R 2(fuff)

What's the amortized cost of insertion?

This is a paradigm for compiling any
static data structure into a dynamic one

JOURNAL OF ALGORITHMS 1, 301-358 (1980)

Decomposable Searching Problems

|. Static-to-Dynamic Transformation*

JoN Louts BENTLEY' AND JAMES B. SAXE

Department of Computer Science, Carnegie—Mellon University,
Pitisburgh, Pennsylvania 15213

Received October 29, 1979; revised April 15, 1980

