15451 Fall 2022

Amortized Analysis

Elaine Shi

Imagine some data structure

- Each operation takes non-uniform runtime
- An algorithm may make many calls to the data structure
- What matters: average cost per operation, also called amortized cost

Example: growing an array

- On item arrival, store in an array
- No prior knowledge of #items

What space should we preserve for the array?

- Allocate O(1) upfront
- Whenever full, double the size

What is the amortized cost?

std: vector

- > constructor: vector<int> array
 > push_back add new item
- > pop_back < deletion
- > index into: array[i]
- - Allocate O(1) upfront
- ▼ Whenever full, double the size
 - Whenever 1/4 loaded, half the size

This Lecture

- Learn how to do amortized analysis
- Design algorithms with good amortized runtime

Amortized algorithm design and analysis are useful in many applications!

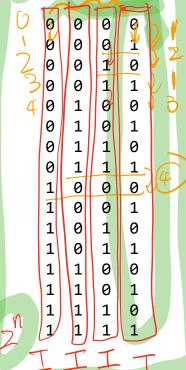
Growing an array

- m = received actual
- <u>initialize()</u>: allocates an empty table of <u>size 1</u> (n = 1, s = 0)
- insert(): add a new element to the table (s++)
 - o if s = n then grow(),
- add the new elem to array[s] (costs 1)
 grow() double the size from n to 2n, costs 2n
- Suppose at the end, there are melements in the array.

What is the amortized cost of such an array?

Let N be the space allocated at the end of the day $2+4+8+\cdots+N \leq 2N \leq 4m$ $2+4+8+\cdots+N \leq 2N \leq 4m$ $2+4+8+\cdots+N \leq 2N \leq 4m$

Another example: Binary Counter



- Suppose each bit flipped costs 1
- Amortized cost of the binary counter?

$$T=2^{N}$$
 $1+\frac{1}{2}+\frac{1}{4}$... ≤ 2
 $T+\frac{1}{2}+\frac{1}{4}+\dots$ $\leq 2T$
 $2T-6$

The Potential Method

- Another method of counting
- Sometimes makes analysis easier
 - o e.g., for more complex algorithms

The Potential Method

Banker's view

- initially bank is empty
- every step:
 - o put coins into bank
 - pay for the work using (part of) the coins in the bank

How many coins should we deposit per step, s.t. we never run out of coins?

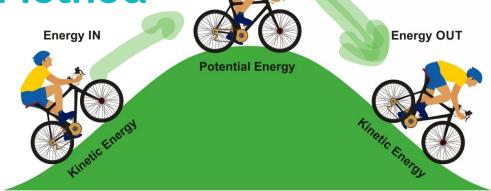
Banker's view: Binary Counter total coins in bank Di = cost of step i + Din-Di

Banker's view: Binary Counter

- bank: 1 coin on each 1 bit
- every 0 ⇒ 1: deposit 2 coins
- every 1 ⇒ 0: use the coins on 1s to pay

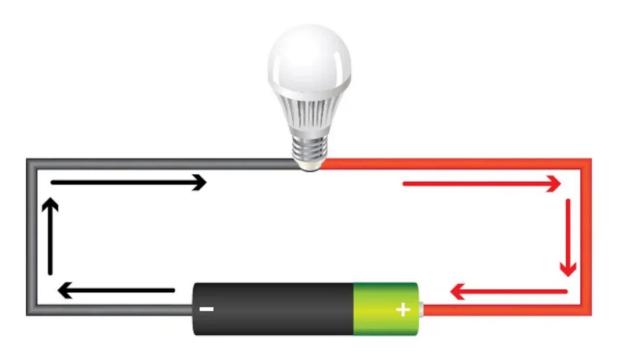
The Potential Method

Physist's view





Electric potential = voltage



The Potential Method

Physist's view

- Need to pay to build up potential
- Whenever the algorithm incurs some cost, we can pay for it using the potential

How much should we pay per step, s.t. there is always enough potential to pay for the algorithm's cost?

amortized cost of the ith operation of steply $ac_i = c_i + \phi_i$ operation $c_i = c_i + \phi_i$ operation $c_i = c_i + c_i$ operation $c_i = c_i$

(amortized cost) = (actual cost) + (change in potential).

$$ac_i = c_i + \phi_i - \phi_{i-1}$$

(amortized cost) = (actual cost) + (change in potential).

Summing both sides

$$\sum_{i} ac_{i} = \sum_{i} (c_{i}) + \phi_{i} - \phi_{i-1}) = \phi_{n} - \phi_{0} + \sum_{i} c_{i}$$

$$ac_i = c_i + \phi_i - \phi_{i-1}$$

(amortized cost) = (actual cost) + (change in potential).

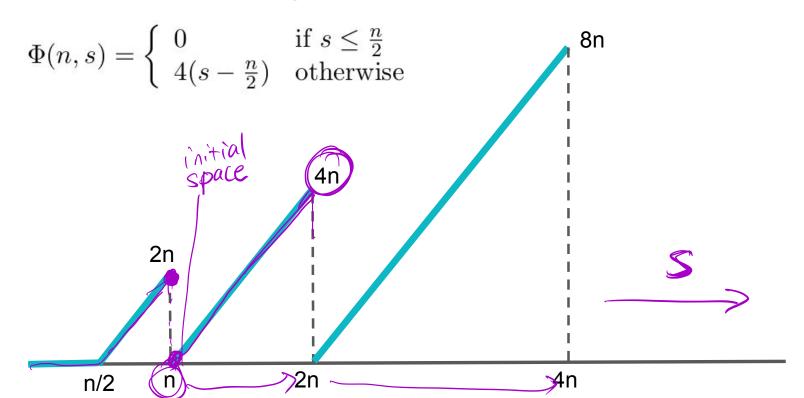
Summing both sides

$$\sum_{i} ac_{i} = \sum_{i} (c_{i} + \phi_{i} - \phi_{i-1}) = \phi_{n} - \phi_{0} + \sum_{i} c_{i}$$

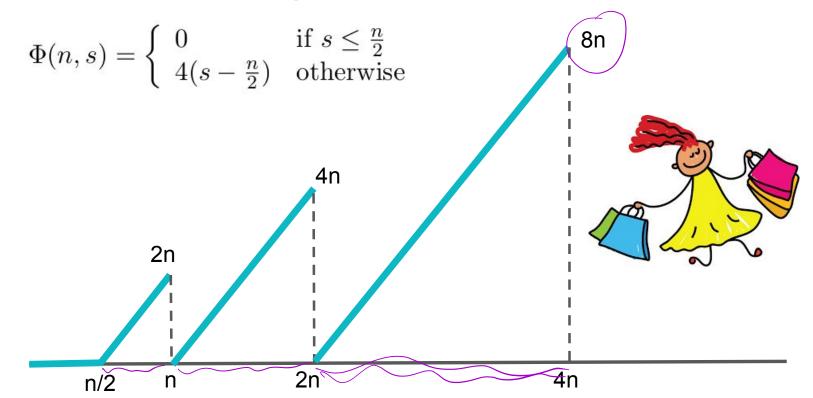
$$\sum_{i} c_{i} = \sum_{i} ac_{i} + \phi_{0} - \phi_{n}$$

Potential analysis: growing a table
$$\Phi(n,s) = \begin{cases} 0 & \text{if } s \leq \frac{n}{2} \\ 4 + \frac{n}{2} & \text{otherwise} \end{cases}$$
whenever I don't need to grow:
$$C = 1 + 4 = 5$$
whenever I need to grow:
$$\Phi(n) = \frac{1}{2} + \frac{$$

Potential analysis: growing a table



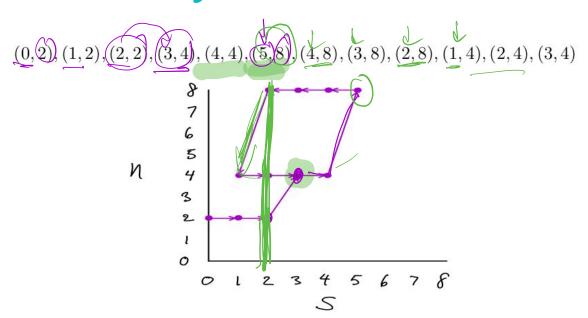
Potential analysis: growing a table

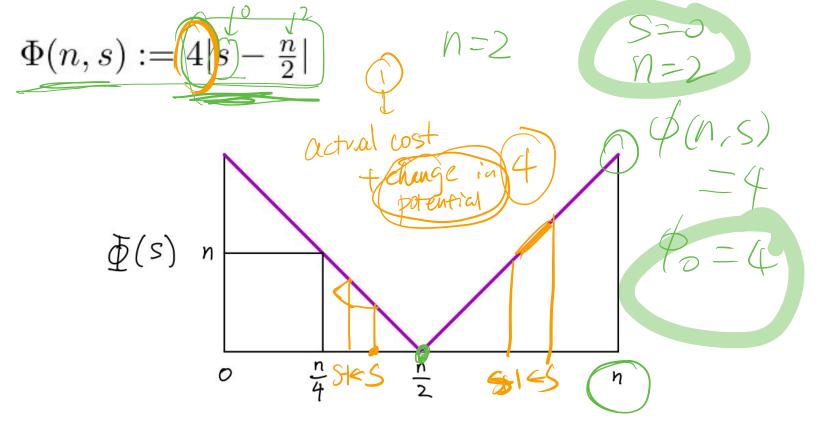


Potential analysis: growing and shrinking a table

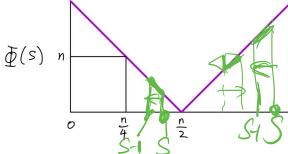
- initialize(): allocates an empty table of size 2 (n = 2, s = 0)
- insert(): add a new element to the table (s++)
 - o if s = n then grow(),
 - add the new elem to array[s] (costs 1)
- delete(): delete the last elem from table (s--)
 - o if s = n/4 and n>=4 then shrink()
 - delete last elem (costs 1)
- grow(): double the size from n)to(2n) costs 2n
- shrink(): change the size of table to n/2. Costs n.

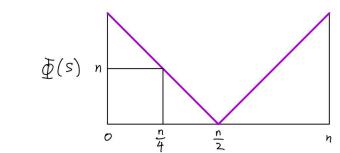
Value of n depends not just on s, but also the history





Theorem: total cost of N insertions and deletions is at most 5N + 4.





The dictionary data structure

- insert(key, val)
- search(key)

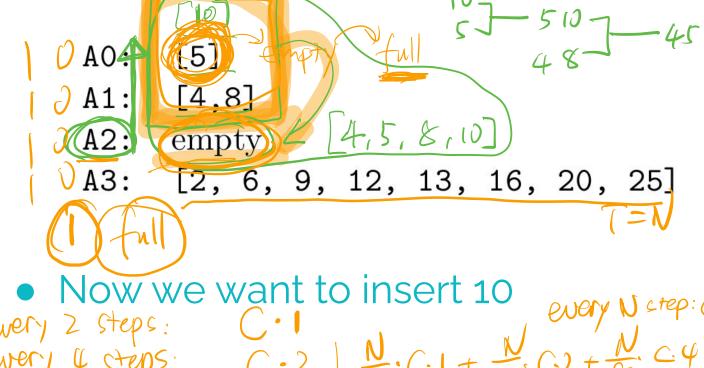
Next lecture: splay tree

Today: a hierarchical data structure that is almost as good as splay tree.

A sorted array can be searched in O(log n) time
Unfortunately insertion is slow


```
Static data
Structure,
                 search ()
                   +insert()
     dynamic
```

() (logn·logn) = 0 (log2n)



After inserting 10

A2: [4, 5, 6]

A3: [2, 6, 9, 12, 13, 16,

A4 empty

55]
(30)
(50)[
A):

13, 16, 20, 25] 14.5,68,9,10,12,13,16, 22, 25.30 31 5053

What's the amortized cost of insertion?

This is a paradigm for compiling any static data structure into a dynamic one

JOURNAL OF ALGORITHMS 1, 301-358 (1980)

Decomposable Searching Problems

I. Static-to-Dynamic Transformation*

JON LOUIS BENTLEY[†] AND JAMES B. SAXE

Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213

Received October 29, 1979; revised April 15, 1980