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Imagine some data structure

● Each operation takes non-uniform 
runtime

● An algorithm may make many calls to 
the data structure

● What matters:  average cost per 
operation, also called amortized cost



● Allocate O(1) upfront
● Whenever full, double the size
What is the amortized cost?

Example: growing an array
● On item arrival, store in an array
● No prior knowledge of #items

What space should we preserve 
for the array?



std: vector
➢  constructor: vector<int> array
➢  push_back
➢  pop_back
➢  index into: array[i]

● Allocate O(1) upfront
● Whenever full, double the size
● Whenever ¼ loaded, half the size



This Lecture
● Learn how to do amortized analysis
● Design algorithms with good 

amortized runtime

Amortized algorithm design and 
analysis are useful in many applications!



Growing an array
● initialize(): allocates an empty table of size 1 (n = 1, s = 0)
● insert(): add a new element to the table (s++)

○ if s = n then grow(),  
○ add the new elem to array[s] (costs 1)

● grow(): double the size from n to 2n, costs 2n
Suppose at the end, there are m elements in the array.

What is the amortized cost of such an array?





Another example: Binary Counter
0  0  0  0
0  0  0  1
0  0  1  0
0  0  1  1
0  1  0  0
0  1  0  1
0  1  1  0
0  1  1  1
1  0  0  0
1  0  0  1
1  0  1  0
1  0  1  1
1  1  0  0
1  1  0  1
1  1  1  0
1  1  1  1

● Suppose each bit flipped costs 1
● Amortized cost of the binary counter?





The Potential Method

● Another method of counting
● Sometimes makes analysis easier

○ e.g., for more complex algorithms



The Potential Method
Banker’s view
● initially bank is empty
● every step:

○ put coins into bank
○ pay for the work using (part of) the coins in 

the bank
How many coins should we deposit per step, 
s.t. we never run out of coins?



Banker’s view: Binary Counter



Banker’s view: Binary Counter

● bank: 1 coin on each 1 bit
● every 0 ⇒ 1:  deposit 2 coins
● every 1 ⇒ 0: use the coins on 1s to pay



The Potential Method
Physist’s view



Electric potential = voltage



The Potential Method
Physist’s view
● Need to pay to build up potential
● Whenever the algorithm incurs some cost, we 

can pay for it using the potential

How much should we pay per step, s.t. there is 
always enough potential to pay for the 
algorithm’s cost?





Summing both sides



Summing both sides



Potential analysis: growing a table
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Potential analysis: growing and 
shrinking a table
● initialize(): allocates an empty table of size 2 (n = 2, s = 0)
● insert(): add a new element to the table (s++)

○ if s = n then grow(),  
○ add the new elem to array[s] (costs 1)

● delete(): delete the last elem from table (s--)
○ if s = n/4 and n>=4 then shrink()
○ delete last elem (costs 1)

● grow(): double the size from n to 2n, costs 2n
● shrink(): change the size of table to n/2. Costs n.



Value of n depends not just on s, but 
also the history





Theorem: total cost of N insertions 
and deletions is at most 5N + 4.





The dictionary data structure

● insert(key, val)
● search(key)

Next lecture: splay tree
Today: a hierarchical data structure that 
is almost as good as splay tree.



● A sorted array can be searched 
in O(log n) time

● Unfortunately insertion is slow



● Search: binary search in each level



● Now we want to insert 10





After inserting 10



What’s the amortized cost of insertion?



This is a paradigm for compiling any 
static data structure into a dynamic one


