
Elaine Shi

Amortized Analysis

15451 Fall 2022

Imagine some data structure

● Each operation takes non-uniform
runtime

● An algorithm may make many calls to
the data structure

● What matters: average cost per
operation, also called amortized cost

● Allocate O(1) upfront
● Whenever full, double the size
What is the amortized cost?

Example: growing an array
● On item arrival, store in an array
● No prior knowledge of #items

What space should we preserve
for the array?

std: vector
➢ constructor: vector<int> array
➢ push_back
➢ pop_back
➢ index into: array[i]

● Allocate O(1) upfront
● Whenever full, double the size
● Whenever ¼ loaded, half the size

This Lecture
● Learn how to do amortized analysis
● Design algorithms with good

amortized runtime

Amortized algorithm design and
analysis are useful in many applications!

Growing an array
● initialize(): allocates an empty table of size 1 (n = 1, s = 0)
● insert(): add a new element to the table (s++)

○ if s = n then grow(),
○ add the new elem to array[s] (costs 1)

● grow(): double the size from n to 2n, costs 2n
Suppose at the end, there are m elements in the array.

What is the amortized cost of such an array?

Another example: Binary Counter
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

● Suppose each bit flipped costs 1
● Amortized cost of the binary counter?

The Potential Method

● Another method of counting
● Sometimes makes analysis easier

○ e.g., for more complex algorithms

The Potential Method
Banker’s view
● initially bank is empty
● every step:

○ put coins into bank
○ pay for the work using (part of) the coins in

the bank
How many coins should we deposit per step,
s.t. we never run out of coins?

Banker’s view: Binary Counter

Banker’s view: Binary Counter

● bank: 1 coin on each 1 bit
● every 0 ⇒ 1: deposit 2 coins
● every 1 ⇒ 0: use the coins on 1s to pay

The Potential Method
Physist’s view

Electric potential = voltage

The Potential Method
Physist’s view
● Need to pay to build up potential
● Whenever the algorithm incurs some cost, we

can pay for it using the potential

How much should we pay per step, s.t. there is
always enough potential to pay for the
algorithm’s cost?

Summing both sides

Summing both sides

Potential analysis: growing a table

Potential analysis: growing a table

n/2

2n

n 2n

4n

4n

8n

Potential analysis: growing a table

n/2

2n

n 2n

4n

4n

8n

Potential analysis: growing and
shrinking a table
● initialize(): allocates an empty table of size 2 (n = 2, s = 0)
● insert(): add a new element to the table (s++)

○ if s = n then grow(),
○ add the new elem to array[s] (costs 1)

● delete(): delete the last elem from table (s--)
○ if s = n/4 and n>=4 then shrink()
○ delete last elem (costs 1)

● grow(): double the size from n to 2n, costs 2n
● shrink(): change the size of table to n/2. Costs n.

Value of n depends not just on s, but
also the history

Theorem: total cost of N insertions
and deletions is at most 5N + 4.

The dictionary data structure

● insert(key, val)
● search(key)

Next lecture: splay tree
Today: a hierarchical data structure that
is almost as good as splay tree.

● A sorted array can be searched
in O(log n) time

● Unfortunately insertion is slow

● Search: binary search in each level

● Now we want to insert 10

After inserting 10

What’s the amortized cost of insertion?

This is a paradigm for compiling any
static data structure into a dynamic one

