Topic 2: Concrete Models and
Tight Upper and Lower Bounds

Elaine Shi

Research: cryptography, algorithms,
game theory, foundations of
olockchains

elaineshi.com

OH: Tuesdays 4pm-5pm

http://elaineshi.com

Elaine

Runting (iH5%)

Prof. Shi 0

Respected Madam 0
Respected Sir [°.°;

* Number of comparisons to sort an array
* Number of exchanges to sort an array

* Number of comparisons needed to find the largest and
second-largest elements in an array

* Number of probes into a graph needed to determine if the
graph is connected

* Look at models which specify exactly which operations may be
performed on the input, and what they cost
* E.g., performing a comparison, or swapping a pair of elements

* An upper bound of f(n) means the algorithm takes at most f(n) steps
on any input of size n

* A lower bound of g(n) means for any algorithm there exists an input
for which the algorithm takes at least g(n) steps on that input

* In the comparison model, we have n items in some initial order

An algorithm may compare two items (asking is a; > a;?) at a cost of 1
* Moving the items is free

* No other operations allowed, such as XORing, hashing, etc.

* Sorting: given an array a = [a, ..., a, |, output a permutation 1 so that
lar(1), --»axm)] in which the elements are in increasing order

* Theorem: Any determinristic comparison-based sorting algorithm must
perform at Ieastomparisons to sort n elements in the worst case
T~ N ,3/\

* |l.e., for any sorting algorithm A and n = 2, there is an input | of size n so
that A makes > Ig(n!) = Q(nlogn) comparisons to sort I.

* Need to rule out any possible algorithm

* Proof is information-theoretic

* Without loss of generality, we may assume that the input contains
numbers in [1, n], and all numbers are distinct

* How many possible inputs are there?

—

T (0 =2 T/ s clam — px
TE)=3 2nd efgm—> pos?

TBH=|
* Without loss of generality, we may assume that the input cor
numbers in [1, n], and all numbers are distinct

* There are M = n! possible inputs

* A sorting algorithm determines a permutati the input
*Since the result is sorted, there is a one-to-one c nce
between the permutation Tr and the input

* In other words, the algorithm must find out exactly which input it is
among the M possible inputs

231

Sorting Lower Bound

* Information-theoretic: need Ig(n!) bits of information about the input
before we can correctly decide on the output ‘
[ﬂ(ﬂ .):e(wljﬂ)

+ 1g(n) = lg(n) + 15 — D) +1gn — 2) + .. +1g(1) < nlgp

* lg(n!) =1g(n) +1g(n — 1) + 1g(n — 2) > (2) = Q(nlgn)

o(I)

(5@1){"6@/\47.{ (/)+ [aé >_(_
7 gt -~ - @&i}w ho19)

Sorting Lower Bound

 Information-theoretic: need bits of information about the input
before we can correctly decide on the output

e lg(n!) =1lgn) +1glh— 1) +1g(n —2) + ...+ 1g(1) < nlgn
e lg(n!) =1gn) +1glhn — 1) +1gln —2) + ...+ 1g(1) > (g) Ig (g) = Q(nlgn)

sonlgn —ng9< <nlgn @
nlgn —1.443n < Ig(n!) <nlgn —

—— —

e, —

Sorting Upper Bounds EAM- 0‘“‘“"
g upp Mookt

—

 Suppose for simplicity n is a power of 2
* Binary insertion sort: using binary search tg,insert each new element,
the number of comparisons is Zk:z,...,nfllgki@ <nlgn

Why don’t we often use binary insertion sort in practice?

= Suppose for simplicity n is a power of 2

* Binary insertion sort: using binary search to insert each new element,
the number of comparisons is Y, _, ,[lgk] < nlgn
may need to move items around a lot, but only counting comparisons

Sorting Upper Bounds 4

= Suppose for simplicity n is a power of 2 WZ

* Binary insertion sort: using binary search to insert each new element,
the number of comparisons is Y., ,[lgk] < nlgn
* Note: may need to move items around a lot, but only counting comparisons

* Mergesort: merging two sorted lists of n/2 elements requires at most n-1
comparisons

* Unrolling the recurrence, total number of comparisons is

@+2(§—1>+4G—1)+~-+{2(2—1)=nlgn —(n—1) <nlgn

— —_—— ~

Implication our the lower bound:
® any comparison-based sorting algorithm must take
QQ(n log n) time on a RAM

Non-comparison-based algorithms can take o(n log

n) time
® Counting sort j
ﬁ@~ @)

Implication our the lower bound:
® any comparison-based sorting algorithm must take Q
(n log n) time on a RAM

Cool fact about comparison-based sort (0-1 principle)

® any comparison-based sorting algorithm that can sort
Os and 1s can sort arbitrary numbers!

® Proof: see Knuth’s textbook

Implication our the lower bound:
® any comparison-based sorting algorithm must take
QQ(n log n) time on a RAM

Possible to achieve o(n log n) with
non-comparison-based techniques
e Counting sort

nLagn

Deterministic sorting in O(nlog log n) time and linear
space)

¥Ying f =

Author: Yijie Han Authors Info & Claims

STOC '02: Proceedings of the thiry-fourth annual ACM symposium on Theory of computing « May 2002 « Pages 602—
608 « https://doi.org/10.1145/509907.509993

Online: 19 May 2002 Publication History

Go down the list and check if each element is bigger
than the previous. If not, eliminate the element.

The result must be sorted

Elimination-based sorting -

Selection in the Comparison Model

* How many comparisons are necessary and sufficient to find the maximum of n
elements in the comparison model?

Selection in the Comparison Model

How many comparisons are necessary and sufficient to find the maximum of n
elements in the comparison model?

(1. gomparisons are sufficient

Proof: scan fPam left to right, keep track of the largest element so far

For lower bounds,
* Only Q(logn), whick
—

Rat does our earlier information-theoretic argument give?
is too weak

o

ents, otherwise we may have not looked at the largest,

Also, we have to look at all el&
but that can be done wit mparisons, also not tight

Lower Bound for Finding the Maximum

e Claim: n-1 comparisons are needed in the worst-case to find the maximum

of n elements
‘ + M A : VM‘/ I&rﬁa

Nwmber
; \ o+
3

+ W)

Lower Bound for Finding the Maximum

* Claim: n-1 comparisons are needed in the worst-case to find the maximum
of n elements

* Claim: n-1 comparisons are needed in the worst-case to find the maximum
of n elements

* Proof: suppose A is an algorithm which finds the maximum of n distinct
elements using fewer than n-1 comparisons

* Construct a graph G in which we join two elements by an edge if they are
compared by A

* G has at Imonnected componen@ an@

* Suppose A outputs eIemen@s the maximum, andu € C;
* Add a large positive number to each element i@
* Does not change any of the comparisons made by A, so will still outpt@
* But now u is not the maximum, so A is incorrect o

Lower Bound for Finding the Maximum

*Recap: upper and lower bounds match at n-1

* Argument different from information-theoretic bound for sorting

* Instead,
*if algorithm makes too few comparisons on some input In and

outputs@

*find another inpu@where the algorithm makes the same
comparisons and also outputs@

*but Out is not a correct output fo@

—_—

* If algorithm makes “too few” comparisons, fool it into giving an incorrect answer

* Any deterministic algorithm sorting 3 elements requires at least 3 comparisons

* If algorithm makes “too few” comparisons, fool it into giving an incorrect answer

* Any deterministic algorithm sorting 3 elements requires at least 3 comparisons
* If <2 comparisons, some element not looked at and the algorithm is incorrect

o After first comparison, 3 elements are And z, the winner and loser of the first
=2 comparison, as well as the uninvolved

* If the _second query is between w and z, say ~» é, 2
*w is larger
* If the second query is between | and z, say
*|is smaller L
* Algorithm needs one more comparison for correctness W/’/”

* Goal: answer comparisons so that (a) answers consistent with some input In, (b)
answers make the algorithm perform “many” comparisons

* How many comparisons are necessary (lower bound) and sufficient
(upper bound) to find the first and second largest of n distinct
elements?

*Claim: n-1 comparisons are needed in the worst-case

* Proof: need to at least find the maximum

* Claim: 2n-3 comparisons are sufficient to find the first and second-
largest of n elements

* Proof: find the largest using n-1 comparisqQns, then find the largest of
the remainder using n-2 comparisons, so@w-S total

* Upper bound is 2n-3, and lower bound n-1, both are ®(n) but can we
get tight bounds?

Second_ Largest of n Elements Upper Bound

. Clalmomparisons are sufficient to find the first and
second-largest of n elements

* Proof: find the maximum element using n-1 comparisons by grouping
elements into pairs, finding the maximum in each pair, and recursing

Y {\1 (D (s N-te lgh

Round 1 A
n '{'(ﬁ h—2

Round 2
Round 3

* What can we say about the second maximum?
* Must have been directly compared to the maximum and lost, so Ig(n)-1
additional comparisons suffice. Kislitsyn (1964) shows this is optimal
—

—

Sorting in the Exchange Model

* Consider a shelf containing n unordered books to be arranged
alphabetically. How many swaps do we need to order them?

PIETRO CITATI LA PENSEE CHATOYANTE

oo
cns de b UNECANSE A PECHE POLR MON GRAND PRE - GAO XINGIAY

-
-

* Consider a shelf containing n unordered books to be arranged
alphabetically. How many swaps do we need to order them?

*In the exchange model, you have n items and the only operation
allowed on the items is to swap a pair of them at a cost of 1 step

* All other work is free, e.g., the items can be examined and
compared

* How many exchanges are necessary and sufficient?

* Claim: n-1 exchanges is sufficient
* Proof: here’s an algorithm:
* In first step, swap the smallest item with the item in the first location

* In second step, swap the second smallest item with the item in the
second location

* In k-th step, swap the k-th smallest item with the item in the k-th
location
* If no swap is necessary, just skip a given step

* No swap ever undoes our previous work
* At the end, the last item must already be in the correct location

Lower Bound for Sorting in Exchange Model

* Claim: n-1 exchanges are necessary in the worst case

Lower Bound for Sorting in Exchange Model

* Claim: n-1 exchanges are necessary in the worst case

* Proof: create a directed graph in which the edge (I,J) means the book
in location i must end up in location j —

! aée

Figure 1: Graph for input [f c d e b a g]

* Graph is a set of cycles
* Indegree and Outdegree of each node is 1

Lower Bound for Sorting in Exchange Model

* What is the effect of exchanging any two elements in the same cycle?
* Suppose we have edges (i, j;) and (i, j,) and swap elements in locations i; and i,

* This replaces these edges with (i, j;) and (iy, j,) since now the item in position i,
need to go to j; and item in position i; need to go toj,

* Since i; and i, in the same cycle, now we get two disjoint cycles

Lower Bound for Sorting in Exchange Model

* What is the effect of exchanging any two elements in different cycles?

* If we swap eIements@ and @in different cycles, similar argument
shows this merges two cycles into one cycle

]'1 Q QLCL
- C/ /
) i1 c — i2c| (e
(= ===/
)2

* What is the effect of exchanging any two elements in the same cycle?
* Get two disjoint cycles

* What is the effect of exchanging any two elements in different cycles?
* Merges two cycles into one cycle

* Corner cases also result in self loop and create two disjoint cycles

* What is the effect of exchanging any two elements in the same cycle?
* Get two disjoint cycles

* What is the effect of exchanging any two elements in different cycles?
* Merges two cycles into one cycle

* Corner cases also result in self loop and create two disjoint cycles

* How many cycles are in the final sorted array?
* n cycles

* Suppose we begin with an array [n, 1, 2, ..., n-1] with-ene big cycle
* Each step increases the # cycles by at most 1, so need n-1 steps

* Let G be the adjacency matrix of an n-node graph
* GJ[i,j] = 1if there is an edge between i and j, else G[i,j] =0

*In 1 step, we can query any element of G. All other computation is free
* How many queries do we need to tell if G is connected?

* Claim{ n(n-1)/2 queries suffice

* Proof: Just query every pair {i,j} to learn G, then check if G is connected

* What about lower bounds? ‘.

* Theorem: n(n-1)/2 queries are necessary to determine connectivity

* Proof: adversary strategy: given a query G[u,v], answer_Q unless the
graph consistent with all of your responses so far, whi |so satisfies
Gr[y;v/'lE\l for each unasked pair {u’,v’}, is disconnercltg%a\

“o Invariant: for any unasked pair {uiv}, the graph revealed so far has no
pathfromutov

* Reason: consider the last edge {u’,v’} revealed on that path. Could have
answered 0 and kept same connectivity by having edge {u,v} be present

*Theorem: n(n-1)/2 queries are necessary to determine connectivity

* Proof: adversary strategy: given a query G[u,v], answer 0 unless the
graph consistent with all of your responses so far, which also satisfies
G[u’, V'] = 1 for each unasked pair {u’,v’}, is disconnected

* Invariant: for any unasked pair {u,v}, the graph revealed so far has no
path fromutov

e Suppose there is some unasked pair {u,v} by the algorithm
* If algorithm says “connected”, we place all Os on unasked pairs
* If algorithm says “disconnected”, we place all 1s on unasked pairs

* So algorithm needs to query every pair

Some open questions!

Comparison-based model:
® nlognis both upper and lower bound

Non-comparison-based techniques?

Comparison-based model:
® nlognis both upper and lower bound

Non-comparison-based techniques?

e for k-bit keys, can sort in roughly O(n * k)-sized
circuit [ALS’20, LS'21]

e if k =0(log n), can overcome the n log n barrier

e ()(n*k) is necessary assuming Li-Li network coding
conjecture [ALS’20]

