
Topic 1: Introduction and
Median Finding

David Woodruff

Danny Sleator

Goals of the Course

• Design and analyze algorithms!

• Algorithms: dynamic programming, divide-and-conquer, hashing and
data structures, randomization, network flows, linear programming,
approximation algorithms

• Analysis: recurrences, probabilistic analysis, amortized analysis,
potential functions

• New Models: online algorithms, data streams

Guarantees on Algorithms

• Want provable guarantees on the running time of algorithms

• Why?

• Composability: if we know an algorithm runs in time at most T on any
input, don’t have to worry what kinds of inputs we run it on

• Scaling: how does the time grow as the input size grows?

• Designing better algorithms: what are the most time-consuming steps?

Example: Median Finding

• In the median-finding problem, we have an array of distinct numbers

ଵ ଶ ୬

and want the index i for which there are exactly n/2 numbers larger than ୧

• How can we find the median?
• Check each item to see if it is the median: ଶ time

• Sort items with MergeSort (deterministic) or QuickSort (randomized): time

• Can we find it faster? What about finding the k-th smallest number?

QuickSelect Algorithm to Find the k-th Smallest Number

• Assume ଵ ଶ ୬ are all distinct for simplicity

• Choose a random element ୧ in the list – call this the “pivot”

• Compare each ୨ to ୧
• Let LESS = {a୨ such that a୨ < a୧}
• Let GREATER = {a୨ such that a୨ > a୧}

• If k , find the k-th smallest element in LESS
• If k , output the pivot ୧
• Else find the (k-|LESS|-1)-th smallest item in GREATER

• Similar to Randomized QuickSort, but only recurse on one side!

Bounding the Running Time

• Theorem: the expected number of comparisons for QuickSelect is at most 4n

• T(n,k) is the expected number of comparisons to find k-th smallest item in an array of length n
• T(n,k) is the same for any array! Can show by induction
• Let

୩

• T(n) is a non-decreasing function of n
• Can show by induction

• Let’s show T(n) < 4n by induction

• Base case: T(1) = 0 < 4

• Inductive hypothesis: T(i) < 4i for all

Bounding the Running Time
• Suppose we have an array of length n. Assume n is even for the moment

• Pivot randomly partitions the array into two pieces, LESS and GREATER, with |LESS| + |GREATER| = n-1

• |LESS| is uniform in the set {0, 1, 2, 3, …, n-1}

• non-decreasing with i, to upper bound T(n) we can assume we recurse on larger half

• ଶ
୬

୧ୀ౤

మ,…,୬ିଵ

ଶ
୬

୧ୀ౤

మ,…,୬ିଵ

ଷ୬
ସ since the average ଶ୬

୧ୀ౤

మ,…,୬ିଵ is at most 3n/4

completing the induction

Similar Analysis Holds for Odd n
• Suppose we have an array of length n. Assume n is odd now

• Pivot randomly partitions the array into two pieces, LESS and GREATER, with |LESS| + |GREATER| = n-1

• The probability the larger of |LESS| and |GREATER| is (n-1)/2 is 1/n

• The probability the larger of |LESS| and |GREATER| is in {(n+1)/2, …, n-1} is 2/n

• ଵ
୬

୬ିଵ
ଶ

ଶ
୬

୧ୀ౤శభ

మ ,…,୬ିଵ

ଵ
୬

ସ ୬ିଵ
ଶ

ଶ
୬

୧ୀ౤శభ

మ ,…,୬ିଵ

ଶ
୬

୬ାଵ
ଶ there are (n-1)/2 terms to average

over now, and 2/n < 2/(n-1), so we can
still upper bound by the average

completing the induction

What About Deterministic Algorithms?

• Can we get an algorithm which does not use randomness and always
performs O(n) comparisons?

• Idea: suppose we could deterministically find a pivot which partitions
the input into two pieces LESS and GREATER each of size ୬

ଶ

• How to do that?

• Find the median and then partition around that
• Um... finding the median is the original problem we want to solve….

Deterministically Finding a Pivot

• Idea: deterministically find a pivot with O(n) comparisons to partition the
input into two pieces LESS and GREATER each of size at least 3n/10-1

• DeterministicSelect:
1. Group the array into n/5 groups of size 5 and find the median of each group
2. Recursively, find the median of medians. Call this p
3. Use p as a pivot to split into subarrays LESS and GREATER
4. Recurse on the appropriate piece

• Theorem: DeterministicSelect makes O(n) comparisons to find the k-th
smallest item in an array of size n

Running Time of DeterministicSelect

• DeterministicSelect:
1. Group the array into n/5 groups of size 5 and find the median of each group
2. Recursively, find the median of medians. Call this p
3. Use p as a pivot to split into subarrays LESS and GREATER
4. Recurse on the appropriate piece

• Step 1 takes O(n) time since it takes O(1) time to find the median of 5 elements
• Step 2 takes T(n/5) time
• Step 3 takes O(n) time

Claim: |LESS| -1 and |GREATER| -1

Running Time of DeterministicSelect
• Claim: |LESS| -1 and |GREATER| -1

• Example 1: If n = 15, we have three groups of 5:
{1, 2, 3, 10, 11}, {4, 5, 6, 12, 13}, {7,8,9,14,15}

medians: 3 6 9
median of medians p: 6

• There are g = n/5 groups, and at least ୥
ଶ of them have at least 3 elements at

most p. The number of elements or equal to p is at least

• Also at least 3n/10 elements greater than or equal to p

Running Time of DeterministicSelect

• DeterministicSelect:
1. Group the array into n/5 groups of size 5 and find the median of each group
2. Recursively, find the median of medians. Call this p
3. Use p as a pivot to split into subarrays LESS and GREATER
4. Recurse on the appropriate piece

• Steps 1-3 take O(n) + T(n/5) time
• Since |LESS| -1 and |GREATER| -1, Step 4 takes at most T(7n/10) time

• So ୬
ହ

଻୬
ଵ଴

, for a constant c > 0

Running Time of DeterministicSelect

• ୬
ହ

଻୬
ଵ଴

• Time is ଽ
ଵ଴

ଽ
ଵ଴

ଶ

• Recurrence works because n/5 + 7n/10 < n

• For constants c and ଵ ଶ ୰ with ଵ ଶ ୰ , the recurrence
ଵ ଶ ୰ solves to

• If instead ଵ ଶ ୰ the recurrence solves to T(n) = O(n log n)
• If we use median of 3 in DeterministicSelect instead of median of 5, what happens?

