Topic 1: Introduction and
Median Finding

Danny Sleator

Danny Sleator

* Design and analyze algorithms!

* Algorithms: dynamic programming, divide-and-conquer, hashing and
data structures, randomization, network flows, linear programming,
approximation algorithms

* Analysis: recurrences, probabilistic analysis, amortized analysis,
potential functions

* New Models: online algorithms, data streams

* Want provable guarantees on the running time of algorithms

 Why?

* Composability: if we know an algorithm runs in time at most T on any
input, don’t have to worry what kinds of inputs we run it on

* Scaling: how does the time grow as the input size grows?

* Designing better algorithms: what are the most time-consuming steps?

* |In the median-finding problem, we have an array of distinct numbers

aq,ay, ...,ap

and want the index i for which there are exactly |n/2| numbers larger than a;

* How can we find the median?
* Check each item to see if it is the median: ©(n?) time

 Sort items with MergeSort (deterministic) or QuickSort (randomized): ®(nlogn) time

* Can we find it faster? What about finding the k-th smallest number?

Assume aq, a,, ..., a, are all distinct for simplicity
Choose a random element a; in the list — call this the “pivot”

Compare each a; to a;
* Let LESS = {aj such that a; < aj}
* Let GREATER = {a; such that a; > a;}

If k < |LESS|, find the k-th smallest element in LESS
If k = |LESS| + 1, output the pivot a;
Else find the (k-|LESS|-1)-th smallest item in GREATER

Similar to Randomized QuickSort, but only recurse on one side!

Theorem: the expected number of comparisons for QuickSelect is at most 4n

T(n,k) is the expected number of comparisons to find k-th smallest item in an array of length n
* T(n,k) is the same for any array! Can show by induction
* Let T(n) = max T(n, k)

T(n) is a non-decreasing function of n
e Can show by induction

Let’s show T(n) < 4n by induction
Base case: T(1)=0<4

Inductive hypothesis: T(i)<4iforalll1 <i<n-1

* Suppose we have an array of length n. Assume n is even for the moment

* Pivot randomly partitions the array into two pieces, LESS and GREATER, with |LESS| + | GREATER| = n-1
e |LESS| is uniform in theset {0, 1, 2, 3, ..., n-1}

 Since T(i) is non-decreasing with i, to upper bound T(n) we can assume we recurse on larger half

2 ,
RUOELEREED MERNIS (0
<n—1+ %Zizg 4 by inductive hypothesis
-
3n . 2 ..
<n—-1+4 (T) since the average Hzi=2 nql isatmost 3n/4

2)

< 4n completing the induction

* Suppose we have an array of length n. Assume n is odd now

* Pivot randomly partitions the array into two pieces, LESS and GREATER, with |LESS| + | GREATER| = n-1

* The probability the larger of |LESS| and | GREATER]| is (n-1)/2is 1/n

* The probability the larger of |LESS| and | GREATER] is in {(n+1)/2, ..., n-1}is 2/n
1,,(n-1 2 .

ST <=1+ T () + 2 TO)

4(n 1)

-1 +- - + Z L 41 by inductive hypothesis
—

<n—-142-—- + 4((n—1) + rl—+1)/2 there are (n-1)/2 terms to average

over now, and 2/n < 2/(n-1), so we can
still upper bound by the average

< 4n completing the induction

e Can we get an algorithm which does not use randomness and always
performs O(n) comparisons?

* [dea: suppose we could deterministically find a pivot which partitions
the input into two pieces LESS and GREATER each of size [gj

e How to do that?

* Find the median and then partition around that
* Um... finding the median is the original problem we want to solve....

* [dea: deterministically find a pivot with O(n) comparisons to partition the
input into two pieces LESS and GREATER each of size at least 3n/10-1

* DeterministicSelect:
1. Group the array into n/5 groups of size 5 and find the median of each group
2. Recursively, find the median of medians. Call this p
3. Use p as a pivot to split into subarrays LESS and GREATER
4. Recurse on the appropriate piece

* Theorem: DeterministicSelect makes O(n) comparisons to find the k-th
smallest item in an array of size n

* DeterministicSelect:
1. Group the array into n/5 groups of size 5 and find the median of each group
2. Recursively, find the median of medians. Call this p
3. Use p as a pivot to split into subarrays LESS and GREATER
4. Recurse on the appropriate piece

e Step 1 takes O(n) time since it takes O(1) time to find the median of 5 elements
* Step 2 takes T(n/5) time

 Step 3 takes O(n) time

Claim: |LESS| = 3n/10-1 and |GREATER| = 3n/10-1

 Claim: |[LESS| = 3n/10-1 and |GREATER| = 3n/10-1

 Example 1: If n = 15, we have three groups of 5:
{1, 2, 3,10, 11}, {4, 5, 6, 12,13}, {7,8,9,14,15}
medians: 3 6 9
median of medians p: 6

* There are g = n/5 groups, and at least [%] of them have at least 3 elements at

most p. The number of elements less than or equal to p is at least

g1 3n
Zl> —
3 [2‘ 10

* Also at least 3n/10 elements greater than or equal to p

* DeterministicSelect:
1. Group the array into n/5 groups of size 5 and find the median of each group
2. Recursively, find the median of medians. Call this p
3. Use p as a pivot to split into subarrays LESS and GREATER
4. Recurse on the appropriate piece

 Steps 1-3 take O(n) + T(n/5) time
e Since |LESS| = 3n/10-1 and |GREATER| = 3n/10-1, Step 4 takes at most T(7n/10) time

*SoT(n) <cn+T (g) + T (Z—E), for a constantc >0

-T(n)<cn+T()+T(1O)

Total: en

cn/o

7en /10

Total: 9¢en/10

* Time is cn (1 + (110) + (i)z +) < 10cn

10

* Recurrence works because n/5+ 7n/10< n

* For constants cand a4, a,, ...a, witha; +a, + -
3 + ...+ T(arn) + cn soIves to T(n) = 0(n)

* Ifinsteada; +a, + ...+ a, = 1, the recurrence solves to T(n) =

T(n) < T(a;n) + T(azn

Total: 81en/100

-ar < 1, the recurrence

O(n log n)

 If we use median of 3 in DeterministicSelect instead of median of 5, what happens?

