
15-451/651: Design & Analysis of Algorithms January 17, 2022
Introduction to Programming Assignments last changed: February 4, 2022

The programming assignments are meant to help you (a) cement your understanding of the algo-
rithmic concepts you learn in lecture, and (b) ensure that you can translate them into correct and
fast programs. The programs are autograded on a set of test cases, of varying complexity and sizes.
The suite of test cases is intended to push your program to the limits, to make sure it is correct,
it scales, and that it is faithful to other aspects of the specifications. It is important that you have
the concepts right, but also that you pay attention to the details.

This writeup tells you about the submission process, but also has a list of suggestions for how to
debug your programs, and other dos-and-donts for programming assignments. Hope you find it
useful!

1 Submitting to Autolab

When submitting your assignment to Autolab, please create a tar of your solution file that is
named according to the specific assignment name. For purposes of this handout we’ll use a fic-
titious name “permcrusher”. So in this case you would name your submission permcrusher.c,
permcrusher.cpp, Permcrusher.java, permcrusher.ml, permcrusher.rs, or permcrusher.sml.
If you need to include additional files, please ensure they compile according to our rules in the
Requirements section, and then include them in the tar file.

For example, if you are using C for this assignment, then create your tar file with the following
command: tar cvf handin.tar permcrusher.c.

2 Requirements

Your solution should accept input from stdin and write to stdout, in the format described in the
problem statement. (See section 4 for more info on reading and writing to stdin and stdout.)

You can write your solution in any of the following languages:

� C

– Compiled with: gcc -std=c11 permcrusher.c -lm

– Autolab will use gcc version 9.3.1.

– gcc on unix.andrew.cmu.edu is version 9.3 0.

� C++

– Compiled with: g++ -std=c++17 permcrusher.cpp -lm

– Autolab will use g++ version 9.3.1.

– gcc on unix.andrew.cmu.edu is version 9.3 0.

� Java

– Compiled with: javac -Xlint:unchecked Permcrusher.java

– Autolab will use OpenJDK version 11.0.10.

1



� OCaml

– Compiled with: ocamlopt permcrusher.ml

– Autolab will use OCaml version 4.05.

– The ocaml on unix.andrew.cmu.edu is 4.08.1.

� Rust

– Compiled with: rustc permcrusher.rs

– Autolab will use Rustc version 1.49.0.

– The rust version on unix.andrew.cmu.edu is 1.51.0.

� SML

– Compiled with: mlton permcrusher.mlb

– Autolab will use MLton version 20210117

– The MLton version on unix.andrew.cmu.edu is the same.

– If you don’t include a permcrusher.mlb file in handin.tar, the mlb file will be auto-
matically generated by Autolab, and contain the following:

$(SML_LIB)/basis/basis.mlb

$(SML_LIB)/basis/mlton.mlb

$(SML_LIB)/smlnj-lib/Util/smlnj-lib.mlb

permcrusher.sml

– These libraries will most likely include everything you need for the programming as-
signments. So, simply including permcrusher.sml in your handin.tar file should be
sufficient.

– If you’d like to use libraries besides the ones included by default, you can provide your
own permcrusher.mlb file, and tar it (along with permcrusher.sml) into handin.tar.
Just remember to include permcrusher.sml in permcrusher.mlb. List of available
libraries here: http://mlton.org/MLBasisAvailableLibraries

The time in seconds (and in some cases memory limits) for your program will be specified in the
homework assignment handout. These limits are usually generous enough to accept most reasonable
solutions to the problem.

The homework handout may also ask you to write a short description of your algorithm, and/or
its analysis in a comment at the top of your source file.

3 Autograding

The grader will either compare the output of your program against a reference output or process the
output of your program to verify it is a correct solution. There are often many test cases of varying
size, and some tests for edge cases. Part of your score on a given assignment will be a function of
the number of test cases you pass. (It could be proportional, or all or nothing, depending on the
assignment.)

A class-wide scoreboard is available on Autolab. The time taken for your program to run on each of
the test cases will be measured, and the highest such run-time will be displayed on the scoreboard.
Only your best (fastest by this measure) submission will be displayed. The scoreboard also shows
which language was used. You can make up an anonymous user name for use on the scoreboard.

2

http://mlton.org/MLBasisAvailableLibraries


4 Examples in your Language of Choice

The following examples all read input from stdin for the the fictitious “permcrusher” problem. In
this case the input is a number n followed by n numbers in the range [0, n− 1]. It then prints out
the same information. (In most languages there are many ways to deal with text input and output.
This code just illustrates one way to do it.)

5

0 4 1 3 2

4.1 C

#include <stdio.h>

int a[1000000];

int main(){

int i, n;

scanf("%d", &n);

for(i=0;i<n;i++) scanf("%d", &a[i]);

printf("n = %d\n", n);

printf("a = [");

for(i=0;i<n;i++) printf(" %d", a[i]);

printf("]\n");

return 0;

}

4.2 C++

#include <iostream>

#include <vector>

int main(){

int i, n;

std::cin >> n;

std::vector<int> a(n);

for (int i = 0; i < n; i++) {

std::cin >> a[i];

}

std::cout << "n = " << n << "\n";

std::cout << "a = [";

for (int i = 0; i < n; i++) {

std::cout << " " << a[i];

}

std::cout << "]\n";

}

4.3 Java

import java.io.*;

3



import java.util.*;

import java.lang.*;

public class Permcrusher {

static int n;

static int[] A;

public static void main(String[] args) throws IOException {

BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

String line = br.readLine().trim();

n = Integer.parseInt(line);

line = br.readLine().trim();

String[] l = line.split(" ");

A = new int[n];

for(int k = 0; k < l.length; k++) {

A[k] = Integer.parseInt(l[k]);

}

System.out.printf("A = [");

for(int i = 0; i<n; i++) System.out.printf(" %d", A[i]);

System.out.printf("]\n");

}

}

4.4 OCaml

open Printf

open Scanf

let read_int _ = bscanf Scanning.stdib " %d " (fun x -> x)

let () =

let n = read_int () in

let a = Array.init n read_int in

printf "n = %d\n" n;

printf "a = [";

for i=0 to n-1 do

printf " %d" a.(i)

done;

printf "]\n"

4.5 Rust

use std::io::{self, Read};

fn main() -> Result<(), Box<dyn std::error::Error>> {

// Preallocate buffer

let mut buffer = String::with_capacity(80_000_000);

let input = io::stdin();

4



let mut input_lock = input.lock();

input_lock.read_to_string(&mut buffer)?;

let nums: Vec<i32> = buffer

.trim_end()

.split(&[’ ’, ’\n’] as &[_])

.skip(1) // Skip n, as we don’t need it

.map(|x| x.parse())

// Return ‘Err(_)‘ if any parse fails

.collect::<Result<_, _>>()?;

// Print out what we read

println!("{:?}", nums);

Ok(())

}

5



4.6 SML

fun main () =

let

val input = TextIO.inputAll TextIO.stdIn

val tokens = String.tokens Char.isSpace input

val n = Option.valOf (Int.fromString (List.hd tokens))

val a = map (Option.valOf o Int.fromString) (List.tl tokens)

val _ = print "The input was:\n"

val _ = print ("n = " ^ (Int.toString n) ^ "\n")

val _ = print ("a = [")

val _ = map (fn x => print (" " ^ (Int.toString x))) a

val _ = print "]\n"

in

0

end

val _ = main ()

6



5 Programming and Debugging Tips

1. Read the problem carefully! Make sure you are solving the correct problem and your output
matches the format specified. Be careful about spelling mistakes, and other trivial formatting
errors in the output.

2. We use diff -wB output correctoutput to compare, but if you have extra lines or other
formatting differences, it may cause problems with the diff.

3. Your program needs to both run within the time limit and have the specified time complexity
for full points.

4. Make sure your idea for the algorithm is in fact correct before debugging your implementation.

5. If we’ve released some test files, please try your algorithm on them. If not, please generate
some test files (both small and large) and test your program. See how slow/fast it runs, and
be sure to test on the example input we give you.

6. If the program times out, use a profiler (or just use print statements) to figure out where your
program is spending all its time. Then speed up the slow part of your program. Similarly, if
your program runs out of memory, think about where you can save on your memory usage.

7. In the case we don’t give you a required time complexity, a good rule of thumb is that
approximately 108 (trivial) operations can be done per second.

8. Some test cases are too large to allocate on the stack, so you should allocating arrays on
the stack (e.g., writing long A[1000000]; within a function in C). In C, instead, please use
malloc (or equivalent operations) to allocate memory. In C++, just use std::vector.

9. Similarly, avoid implementing algorithms recursively (when possible) to prevent stack overflow
on large test cases, and to speed up execution.

10. (Especially for Java) Allocating fresh arrays and copying over data between arrays is slow,
so consider swapping data in-place to speed things up.

11. To debug compilation issues you have to get into the same environment used by Autolab.
You do that by ssh-ing to unix.andrew.cmu.edu, and trying to compile there.

12. The unix command /usr/bin/time -v a.out < huge_test_case.txt outputs very useful
data about space and time usage. (More useful than just time -v a.out < huge_test_case.in

which just calls the in-built shell command.)

13. Returning a non-zero value upon exiting is a signal that the program failed, so please make
sure your program returns 0 when successful, otherwise Autolab may grade incorrectly. And
if you do get a non-zero exit code, find out what it means. (E.g.: Exit code 139 means core
dumped.)

14. If your program fails, read the Autolab output for why it failed. Information like FINISHED

/ MEM / TIMEOUT / RUNTIME_ERROR can be useful.

15. Consider the size of the numbers that you need to compute over. If they may be bigger than
232 − 1, use long integers (in C/C++, use the type long long, which is guaranteed to be at
least 64-bits wide. Be aware that the type long differs by platform and is often only 32-bits
wide on 32-bit systems!).

7



16. Along the same lines, some languages support a type float, which is typically a 32-bit
representation for floating point numbers. Our recommendation is never to use floats, because
it only has about six digits of precision. Always use double for floating point operations.

17. For cases with large input/output, avoid using slower forms of I/O. (e.g., avoid Scanner in
Java). In C++, you should avoid using std::endl when outputting a large number of lines,
since it flushes the output buffer which is slow if done too much. Instead, just output a
newline character "\n".

In C++, std::cin and std::cout might be slow by default. If you are having issues with
I/O speed, you can speed them up by adding the following magic instructions at the beginning
of your main function:

std::ios::sync_with_stdio(false);

std::cin.tie(nullptr);

The first instruction turns off synchronization between C++ and C’s I/O streams, which is
enabled by default (this would allow you to mix/interleave std::cin and scanf, for example,
but I don’t know why you would want to do this). The second instruction tells std::cin to
not flush std::cout’s buffer every time it is used.

18. You are not allowed to use other people’s code (from the internet or otherwise),
with citations or otherwise. You may not search for solutions to problems, but
you can search for error messages and debugging help.

19. Please don’t just ask the TA’s and Professors for hints. Tell us what you tried, what failed,
and we can try to suggest a way forward.

20. The intended solution should run within the allocated time for every supported language.

5.1 Programming and Debugging Tips for C/C++

1. By default, C++ functions pass arguments by value, which means it copies them. Therefore,
if you write a function like void f(std::vector<int> A), it will copy the vector, which could
slow down your code substantially if you call the function repeatedly! If you do not wish to
copy the argument, you should pass it by reference, which is achieved by decorating the type
with an ampersand (&), so the signature would look like void f(std::vector<int>& A).
Since reference parameters refer to the same object as the source argument, they can be
modified from within the function. If you don’t need to modify a reference parameter, it is
a good habit to pass a constant reference, so that you can not accidentally modify it, like so
void f(const std::vector<int>& A).

2. Error messages in C++ can be cryptic sometimes. If an error message from GCC doesn’t
make sense, you could try compiling your code with Clang, another popular open-source C++
compiler. I find that it often gives much better error messages than GCC. Clang is installed
for you on unix.andrew.cmu.edu. The command line arguments for Clang are the same as
for GCC, so just replace gcc/g++ with clang++ and everything should work. e.g.

clang++ -std=c++17 permcrusher.cpp

3. Always use the -Wall -Wextra compile command line options to turn on warnings. This will
catch many common problems, like forgetting to include a return statement in a function
that’s supposed to return a value, or forgetting to initialize a variable.

8



4. Enable sanitizers while debugging your program. They will catch bugs such as going out
of bounds of an array, using memory after it has been freed, dereferencing a null pointer,
etc. In general, they can usually catch the cause of just about anything that would cause a
segfault. To enable them and get the best possible error messages, add the following flags to
GCC/Clang

-g -O0 -fsanitize=address,undefined -fno-omit-frame-pointer

When the sanitizers trip and catch a bug, the output can look a little scary. They tend to
print the contents of memory around which the error occurred, so you’ll often see a giant
array of bytes output to the screen. Just ignore this and look for the stack trace, which
should indicate the line number on which the bug originated.

5. Use gdb (or other debuggers) to debug your program. To get source-level debug info, add the
-g flag to gcc. (Ex: gcc -g file.c will allow gdb to tell you the source line on which your
program segfaults.)

There are many gdb tutorials out there. google “gdb tutorial”

6. If high accuracy is required, and you need to print, say 8 digits after the decimal point of a
double precision variable, you can use printf("%.8lf", x);. Alternatively it can be done
with with setprecision, as in:

std::cout << std::setprecision(8) << x << std::endl;

7. For C++, know (and use) the standard library. If you find yourself re-implementing some
very basic algorithms/data structures, make sure that you actually need to. This pretty much
applies to most of the standard libraries of our languages (except C and SML). For example,
in C++, it is worth knowing and using (when appropriate):

� std::vector - A dynamically sized array

� std::set - Stores elements in sorted order, supporting O(log n) insert / delete / lookup

� std::map - Stores key/value pairs. Supports O(log n) insert / delete / lookup

� std::priority_queue - Represents a priority queue. O(log n) insert and get min.

� std::sort - Sorts a range of elements in O(n log n)

� std::binary_search - Searches for a key in a sorted range in O(log n)

� std::lower_bound - Finds the first element at least as large as the given key in a sorted
range in O(log n)

This is just a small subset of the standard library. In general, if you have to solve a simple
generic problem, check whether it exists in the standard library before trying to implement
your own version. This will save you time and bugs.

9


	Submitting to Autolab
	Requirements
	Autograding
	Examples in your Language of Choice
	C
	C++
	Java
	OCaml
	Rust
	SML

	Programming and Debugging Tips
	Programming and Debugging Tips for C/C++


